Determining the helicity structure of third generation resonances

  • Andreas Papaefstathiou
  • Kazuki Sakurai
Open Access


We examine methods that have been proposed for determining the helicity structure of decays of new resonances to third generation quarks and/or leptons. We present analytical and semi-analytical predictions and assess the applicability of the relevant variables in realistic reconstruction scenarios using Monte Carlo-generated events, including the effects of QCD radiation and multiple parton interactions, combinatoric ambiguities and fast detector simulation.


Beyond Standard Model Hadronic Colliders Heavy Quark Physics 


  1. [1]
    B. Gripaios, Composite leptoquarks at the LHC, JHEP 02 (2010) 045 [arXiv:0910.1789] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Jezabek and J.H. Kuhn, Lepton spectra from heavy quark decay, Nucl. Phys. B 320 (1989) 20 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Czarnecki, M. Jezabek and J.H. Kuhn, Lepton spectra from decays of polarized top quarks, Nucl. Phys. B 351 (1991) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Shelton, Polarized tops from new physics: signals and observables, Phys. Rev. D 79 (2009) 014032 [arXiv:0811.0569] [INSPIRE].ADSGoogle Scholar
  5. [5]
    B. Bullock, K. Hagiwara and A.D. Martin, Tau polarization as a signal of charged Higgs bosons, Phys. Rev. Lett. 67 (1991) 3055 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    B.K. Bullock, K. Hagiwara and A.D. Martin, Tau polarization and its correlations as a probe of new physics, Nucl. Phys. B 395 (1993) 499 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.D. Anderson, M.H. Austern and R.N. Cahn, Measurement of Z′ couplings at future hadron colliders through decays to τ leptons, Phys. Rev. D 46 (1992) 290 [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Gieseke et al., HERWIG ++ 2.5 release note, arXiv:1102.1672 [INSPIRE].
  9. [9]
    D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].ADSGoogle Scholar
  10. [10]
    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Duraisamy, A. Rashed and A. Datta, The top forward backward asymmetry with general Z couplings, Phys. Rev. D 84 (2011) 054018 [arXiv:1106.5982] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M.R. Buckley, D. Hooper, J. Kopp and E. Neil, Light Z bosons at the Tevatron, Phys. Rev. D 83 (2011) 115013 [arXiv:1103.6035] [INSPIRE].ADSGoogle Scholar
  13. [13]
    B. Gripaios, A. Papaefstathiou, K. Sakurai and B. Webber, Searching for third-generation composite leptoquarks at the LHC, JHEP 01 (2011) 156 [arXiv:1010.3962] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Brandenburg, Z. Si and P. Uwer, QCD corrected spin analyzing power of jets in decays of polarized top quarks, Phys. Lett. B 539 (2002) 235 [hep-ph/0205023] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Jezabek, Top quark physics, Nucl. Phys. Proc. Suppl. 37B (1994) 197 [hep-ph/9406411] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    W. Bernreuther, Top quark physics at the LHC, J. Phys. G 35 (2008) 083001 [arXiv:0805.1333] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R.M. Godbole, K. Rao, S.D. Rindani and R.K. Singh, On measurement of top polarization as a probe of \(t\overline t\) production mechanisms at the LHC, JHEP 11 (2010) 144 [arXiv:1010.1458] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R.M. Godbole, L. Hartgring, I. Niessen and C.D. White, Top polarisation studies in H t and W t production, JHEP 01 (2012) 011 [arXiv:1111.0759] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    ATLAS collaboration, G. Aad et al., Search for new phenomena in ttbar events with large missing transverse momentum in proton-proton collisions at \(\sqrt {s} = 7\;TeV\) with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 041805 [arXiv:1109.4725] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    CMS collaboration, S. Chatrchyan et al., Search for a vector-like quark with charge 2/3 in t + Z Events from pp collisions at \(\sqrt {s} = 7\;TeV\), Phys. Rev. Lett. 107 (2011) 271802 [arXiv:1109.4985] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  22. [22]
    P. Bellan, Measurements of inclusive b-quark production at 7 TeV with the CMS experiment, arXiv:1109.2003 [INSPIRE].
  23. [23]
    G.P. Salam, Towards jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    W.H. Press, S.A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical recipes: the art of scientific computing, Cambridge University Press, Cambridge U.K. (2007).Google Scholar
  25. [25]
    A. Elagin, P. Murat, A. Pranko and A. Safonov, A new mass reconstruction technique for resonances decaying to di-τ, Nucl. Instrum. Meth. A 654 (2011) 481 [arXiv:1012.4686] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Gripaios, K. Sakurai and B. Webber, Polynomials, Riemann surfaces and reconstructing missing-energy events, JHEP 09 (2011) 140 [arXiv:1103.3438] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    T. Plehn, M. Spannowsky and M. Takeuchi, How to improve top tagging, Phys. Rev. D 85 (2012)034029 [arXiv:1111.5034] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  29. [29]
    H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland
  2. 2.Deutsches Elektronen Synchrotron DESYHamburgGermany

Personalised recommendations