Determining the helicity structure of third generation resonances

Open Access
Article

Abstract

We examine methods that have been proposed for determining the helicity structure of decays of new resonances to third generation quarks and/or leptons. We present analytical and semi-analytical predictions and assess the applicability of the relevant variables in realistic reconstruction scenarios using Monte Carlo-generated events, including the effects of QCD radiation and multiple parton interactions, combinatoric ambiguities and fast detector simulation.

Keywords

Beyond Standard Model Hadronic Colliders Heavy Quark Physics 

References

  1. [1]
    B. Gripaios, Composite leptoquarks at the LHC, JHEP 02 (2010) 045 [arXiv:0910.1789] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Jezabek and J.H. Kuhn, Lepton spectra from heavy quark decay, Nucl. Phys. B 320 (1989) 20 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Czarnecki, M. Jezabek and J.H. Kuhn, Lepton spectra from decays of polarized top quarks, Nucl. Phys. B 351 (1991) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Shelton, Polarized tops from new physics: signals and observables, Phys. Rev. D 79 (2009) 014032 [arXiv:0811.0569] [INSPIRE].ADSGoogle Scholar
  5. [5]
    B. Bullock, K. Hagiwara and A.D. Martin, Tau polarization as a signal of charged Higgs bosons, Phys. Rev. Lett. 67 (1991) 3055 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    B.K. Bullock, K. Hagiwara and A.D. Martin, Tau polarization and its correlations as a probe of new physics, Nucl. Phys. B 395 (1993) 499 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.D. Anderson, M.H. Austern and R.N. Cahn, Measurement of Z′ couplings at future hadron colliders through decays to τ leptons, Phys. Rev. D 46 (1992) 290 [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Gieseke et al., HERWIG ++ 2.5 release note, arXiv:1102.1672 [INSPIRE].
  9. [9]
    D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].ADSGoogle Scholar
  10. [10]
    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Duraisamy, A. Rashed and A. Datta, The top forward backward asymmetry with general Z couplings, Phys. Rev. D 84 (2011) 054018 [arXiv:1106.5982] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M.R. Buckley, D. Hooper, J. Kopp and E. Neil, Light Z bosons at the Tevatron, Phys. Rev. D 83 (2011) 115013 [arXiv:1103.6035] [INSPIRE].ADSGoogle Scholar
  13. [13]
    B. Gripaios, A. Papaefstathiou, K. Sakurai and B. Webber, Searching for third-generation composite leptoquarks at the LHC, JHEP 01 (2011) 156 [arXiv:1010.3962] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Brandenburg, Z. Si and P. Uwer, QCD corrected spin analyzing power of jets in decays of polarized top quarks, Phys. Lett. B 539 (2002) 235 [hep-ph/0205023] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Jezabek, Top quark physics, Nucl. Phys. Proc. Suppl. 37B (1994) 197 [hep-ph/9406411] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    W. Bernreuther, Top quark physics at the LHC, J. Phys. G 35 (2008) 083001 [arXiv:0805.1333] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R.M. Godbole, K. Rao, S.D. Rindani and R.K. Singh, On measurement of top polarization as a probe of \(t\overline t\) production mechanisms at the LHC, JHEP 11 (2010) 144 [arXiv:1010.1458] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R.M. Godbole, L. Hartgring, I. Niessen and C.D. White, Top polarisation studies in H t and W t production, JHEP 01 (2012) 011 [arXiv:1111.0759] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    ATLAS collaboration, G. Aad et al., Search for new phenomena in ttbar events with large missing transverse momentum in proton-proton collisions at \(\sqrt {s} = 7\;TeV\) with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 041805 [arXiv:1109.4725] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    CMS collaboration, S. Chatrchyan et al., Search for a vector-like quark with charge 2/3 in t + Z Events from pp collisions at \(\sqrt {s} = 7\;TeV\), Phys. Rev. Lett. 107 (2011) 271802 [arXiv:1109.4985] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  22. [22]
    P. Bellan, Measurements of inclusive b-quark production at 7 TeV with the CMS experiment, arXiv:1109.2003 [INSPIRE].
  23. [23]
    G.P. Salam, Towards jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    W.H. Press, S.A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical recipes: the art of scientific computing, Cambridge University Press, Cambridge U.K. (2007).Google Scholar
  25. [25]
    A. Elagin, P. Murat, A. Pranko and A. Safonov, A new mass reconstruction technique for resonances decaying to di-τ, Nucl. Instrum. Meth. A 654 (2011) 481 [arXiv:1012.4686] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Gripaios, K. Sakurai and B. Webber, Polynomials, Riemann surfaces and reconstructing missing-energy events, JHEP 09 (2011) 140 [arXiv:1103.3438] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    T. Plehn, M. Spannowsky and M. Takeuchi, How to improve top tagging, Phys. Rev. D 85 (2012)034029 [arXiv:1111.5034] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  29. [29]
    H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland
  2. 2.Deutsches Elektronen Synchrotron DESYHamburgGermany

Personalised recommendations