Dispersive analysis of the scalar form factor of the nucleon

  • M. HoferichterEmail author
  • C. Ditsche
  • B. Kubis
  • U.-G. Meißner


Based on the recently proposed Roy-Steiner equations for pion-nucleon (πN) scattering [1], we derive a system of coupled integral equations for the \( \pi \pi \to \overline N N \) and \( \overline K K \to \overline N N \) S-waves. These equations take the form of a two-channel Muskhelishvili-Omnès problem, whose solution in the presence of a finite matching point is discussed. We use these results to update the dispersive analysis of the scalar form factor of the nucleon fully including \( \overline K K \) intermediate states. In particular, we determine the correction \( {\Delta_{\sigma }} = \sigma \left( {2M_{\pi }^2} \right) - {\sigma_{{\pi N}}} \), which is needed for the extraction of the pion-nucleon σ term from πN scattering, as a function of pion-nucleon subthreshold parameters and the πN coupling constant.


Chiral Lagrangians QCD 


  1. [1]
    C. Ditsche, M. Hoferichter, B. Kubis and U.-G. Meißner, Roy-Steiner equations for pion-nucleon scattering, JHEP 06 (2012) 043 [arXiv:1203.4758] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Cheng and R.F. Dashen, Is SU(2) × SU(2) a better symmetry than SU(3)?, Phys. Rev. Lett. 26 (1971) 594 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L.S. Brown, W. Pardee and R. Peccei, Adler-Weisberger theorem reexamined, Phys. Rev. D 4 (1971) 2801 [INSPIRE].ADSGoogle Scholar
  4. [4]
    V. Bernard, N. Kaiser and U.-G. Meißner, On the analysis of the pion-nucleon sigma term: The Size of the remainder at the Cheng-Dashen point, Phys. Lett. B 389 (1996) 144 [hep-ph/9607245] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Becher and H. Leutwyler, Low energy analysis of πN → πN, JHEP 06 (2001) 017 [hep-ph/0103263] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Gasser, H. Leutwyler and M. Sainio, Form-factor of the sigma term, Phys. Lett. B 253 (1991) 260 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.F. Donoghue, J. Gasser and H. Leutwyler, The decay of a light Higgs boson, Nucl. Phys. B 343 (1990) 341 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. Höhler, Pion-Nukleon-Streuung: Methoden und Ergebnisse, in Landolt-Börnstein 9b2, H. Schopper eds., Springer Verlag, Berlin Germany (1983).Google Scholar
  9. [9]
    J. de Swart, M. Rentmeester and R. Timmermans, The Status of the pion-nucleon coupling constant, PiN Newslett. 13 (1997) 96 [nucl-th/9802084] [INSPIRE].Google Scholar
  10. [10]
    R. Arndt, W. Briscoe, I. Strakovsky and R. Workman, Extended partial-wave analysis of πN scattering data, Phys. Rev. C 74 (2006) 045205[nucl-th/0605082] [INSPIRE] ADSGoogle Scholar
  11. [11]
    V. Baru et al., Precision calculation of the π d scattering length and its impact on threshold πN scattering, Phys. Lett. B 694 (2011) 473 [arXiv:1003.4444] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V. Baru et al., Precision calculation of threshold π d scattering, πN scattering lengths and the GMO sum rule, Nucl. Phys. A 872 (2011) 69 [arXiv:1107.5509] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K.M. Watson, Some general relations between the photoproduction and scattering of π mesons, Phys. Rev. 95 (1954) 228[INSPIRE] ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    B. Moussallam, N (f) dependence of the quark condensate from a chiral sum rule, Eur. Phys. J. C 14 (2000) 111 [hep-ph/9909292] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R. Omnès, On the solution of certain singular integral equations of quantum field theory, Nuovo Cim. 8 (1958) 316[INSPIRE] CrossRefzbMATHGoogle Scholar
  17. [17]
    S. Descotes-Genon, Effet des boucles de quarks lègers sur la structure chirale du vide de QCD, Ph.D. Thesis, Université de Paris–Sud, Paris France (2000).Google Scholar
  18. [18]
    N.I. Muskhelishvili, Singular Integral Equations, Wolters-Noordhoff Publishing, Groningen The Netherlands (1953) [2nd edition, Dover Publications, New York U.S.A. (2008)].Google Scholar
  19. [19]
    P. Büttiker, S. Descotes-Genon and B. Moussallam, A new analysis of πK scattering from Roy and Steiner type equations, Eur. Phys. J. C 33 (2004) 409 [hep-ph/0310283] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Hoferichter, D.R. Phillips and C. Schat, Roy-Steiner equations for γγππ, Eur. Phys. J. C 71 (2011) 1743 [arXiv:1106.4147] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    I. Caprini, G. Colangelo and H. Leutwyler, Regge analysis of the ππ scattering amplitude, Eur. Phys. J. C 72 (2012) 1860 [arXiv:1111.7160] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    I. Caprini, G. Colangelo and H. Leutwyler, in preparation.Google Scholar
  23. [23]
    D.H. Cohen et al., Amplitude Analysis of the K K + System Produced in the Reactions π pK K + n and π + n → K K + p at 6 GeV/c, Phys. Rev. D 22 (1980) 2595 [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Etkin et al., Amplitude Analysis of the \( K_S^0K_S^0 \) System Produced in the Reaction \( {\pi^{ - }}p \to K_S^0K_S^0n \) at 23 GeV/c, Phys. Rev. D 25 (1982) 1786 [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Anisovich et al., Partial wave analysis of \( \overline p p \)π π +, π 0 π0, ηη and ηη′, Nucl. Phys. A 662 (2000) 319 [arXiv:1109.1188] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Arndt, W. Briscoe, I. Strakovsky and R. Workman, Partial-wave analysis and baryon spectroscopy, Eur. Phys. J. A 35 (2008) 311 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
  28. [28]
    F. Huang, A. Sibirtsev, J. Haidenbauer, S. Krewald and U.-G. Meißner, Backward pion-nucleon scattering, Eur. Phys. J. A 44 (2010) 81 [arXiv:0910.4275] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Hyslop, R. Arndt, L. Roper and R. Workman, Partial wave analysis of K + -nucleon scattering, Phys. Rev. D 46 (1992) 961[INSPIRE] ADSGoogle Scholar
  30. [30]
    H. Hellmann, Einführung in die Quantenchemie, Franz Deuticke, Leipzig Germany (1937).Google Scholar
  31. [31]
    R. Feynman, Forces in Molecules, Phys. Rev. 56 (1939) 340 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B. Ananthanarayan, I. Caprini, G. Colangelo, J. Gasser and H. Leutwyler, Scalar form-factors of light mesons, Phys. Lett. B 602 (2004) 218 [hep-ph/0409222] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J.A. Oller and L. Roca, Scalar radius of the pion and zeros in the form factor, Phys. Lett. B 651 (2007) 139 [arXiv:0704.0039] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. García-Martín, R. Kamiński, J. Peláez, J. Ruiz de Elvira and F. Ynduráin, The Pion-pion scattering amplitude. IV: Improved analysis with once subtracted Roy-like equations up to 1100 MeV, Phys. Rev. D 83 (2011) 074004 [arXiv:1102.2183] [INSPIRE].ADSGoogle Scholar
  38. [38]
    B. Moussallam, Couplings of light I = 0 scalar mesons to simple operators in the complex plane, Eur. Phys. J. C 71 (2011) 1814 [arXiv:1110.6074] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B 603 (2001) 125[hep-ph/0103088] [INSPIRE] ADSCrossRefGoogle Scholar
  40. [40]
    M. Frink, B. Kubis and U.-G. Meißner, Analysis of the pion-kaon sigma term and related topics, Eur. Phys. J. C 25 (2002) 259 [hep-ph/0203193] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Bijnens and P. Dhonte, Scalar form-factors in SU(3) chiral perturbation theory, JHEP 10 (2003) 061 [hep-ph/0307044] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Becher and H. Leutwyler, Baryon chiral perturbation theory in manifestly Lorentz invariant form, Eur. Phys. J. C 9 (1999) 643[hep-ph/9901384] [INSPIRE] ADSGoogle Scholar
  43. [43]
    H. Pagels and W. Pardee, Nonanalytic behavior of the Σ term in π-N scattering, Phys. Rev. D 4 (1971) 3335 [INSPIRE].ADSGoogle Scholar
  44. [44]
    J. Gasser and H. Leutwyler, Quark Masses, Phys. Rept. 87 (1982) 77 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Gasser, M. Sainio and A. Švarc, Nucleons with Chiral Loops, Nucl. Phys. B 307 (1988) 779 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    V. Bernard, N. Kaiser and U.-G. Meißner, Critical analysis of baryon masses and sigma terms in heavy baryon chiral perturbation theory, Z. Phys. C 60 (1993) 111 [hep-ph/9303311] [INSPIRE].ADSGoogle Scholar
  47. [47]
    R.A. Arndt, R.L. Workman, I.I. Strakovsky and M.M. Pavan, πN elastic scattering analyses and dispersion relation constraints, nucl-th/9807087 [INSPIRE].
  48. [48]
    B. Holzenkamp, K. Holinde and J. Speth, A meson exchange model for the hyperon nucleon interaction, Nucl. Phys. A 500 (1989) 485 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    W.R. Frazer and J.R. Fulco, Partial-Wave Dispersion Relations for ππ\( N\overline N \), Phys. Rev. 117 (1960) 1603 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • M. Hoferichter
    • 1
    Email author
  • C. Ditsche
    • 1
  • B. Kubis
    • 1
  • U.-G. Meißner
    • 1
    • 2
  1. 1.Helmholtz–Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität BonnBonnGermany
  2. 2.Institut für Kernphysik, Institute for Advanced Simulation and Jülich Center for Hadron Physics, Forschungszentrum JülichJülichGermany

Personalised recommendations