Advertisement

Vacuum stability bound on extended GMSB models

  • Motoi Endo
  • Koichi Hamaguchi
  • Sho Iwamoto
  • Norimi Yokozaki
Article

Abstract

Extensions of GMSB models were recently explored to explain the recent reports of the Higgs boson mass around 124 − 126 GeV. Some models predict a large μ term, which can spoil the vacuum stability of the universe. We study two GMSB extensions: i) the model with a large trilinear coupling of the top squark, and ii) that with extra vector- like matters. In both models, the vacuum stability condition provides upper bounds on the gluino mass if combined with the muon g − 2. The whole parameter region is expected to be covered by LHC at \( \sqrt {s} = {\text{14TeV}} \). The analysis is also applied to the mSUGRA models with the vector-like matters.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    F. Gianotti, Update on the Standard Model Higgs searches in ATLAS, CERN Public Seminar, 13 December 2011.Google Scholar
  2. [2]
    ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb −1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163 (2011).Google Scholar
  3. [3]
    G. Tonelli, Update on the Standard Model Higgs searches in CMS, CERN Public Seminar, 13 December 2011.Google Scholar
  4. [4]
    CMS collaboration, Combination of SM Higgs searches, PAS-HIG-11-032.Google Scholar
  5. [5]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].ADSGoogle Scholar
  7. [7]
    K. Hagiwara, A. Martin, D. Nomura and T. Teubner, Improved predictions for g − 2 of the muon and α QED \( \left( {M_Z^{{2}}} \right) \), Phys. Lett. B 649 (2007) 173 [hep-ph/0611102] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Teubner, K. Hagiwara, R. Liao, A. Martin and D. Nomura, Update of g − 2 of the muon andα, arXiv:1001.5401 [INSPIRE].
  9. [9]
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)μ and \( {{\alpha }_{{M_Z^2}}} \) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Davier, A. Hoecker, G. Lopez Castro, B. Malaescu, X. Mo, et al., The discrepancy between τ and e + e spectral functions revisited and the consequences for the muon magnetic anomaly, Eur. Phys. J. C 66 (2010) 127 [arXiv:0906.5443] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Davier, A. Hoecker, B. Malaescu, C. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e → π + π cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α MZ, Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  13. [13]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in supersymmetric models with vector-like matters, Phys. Rev. D 84 (2011) 075017 [arXiv:1108.3071] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass, muon g − 2 and LHC prospects in gauge mediation models with vector-like matters, arXiv:1112.5653 [INSPIRE].
  15. [15]
    M. Endo, K. Hamaguchi, S. Iwamoto, K. Nakayama and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM, arXiv:1112.6412 [INSPIRE].
  16. [16]
    J.L. Evans, M. Ibe, S. Shirai and T.T. Yanagida, A 125 GeV Higgs boson and muon g − 2 in more generic gauge mediation, arXiv:1201.2611 [INSPIRE].
  17. [17]
    T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
  18. [18]
    M. Ratz, K. Schmidt-Hoberg and M.W. Winkler, A note on the primordial abundance of Stau NLSPs, JCAP 10 (2008) 026 [arXiv:0808.0829] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Endo, K. Hamaguchi and K. Nakaji, Probing high reheating temperature scenarios at the LHC with long-lived staus, JHEP 11 (2010) 004 [arXiv:1008.2307] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of staus, Phys. Lett. B 696 (2011) 92 [arXiv:1011.0260] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.L. Evans, M. Ibe and T.T. Yanagida, Relatively heavy Higgs boson in more generic gauge mediation, Phys. Lett. B 705 (2011) 342 [arXiv:1107.3006] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.L. Evans, M. Ibe and T.T. Yanagida, Probing extra matter in gauge mediation through the lightest Higgs boson mass, arXiv:1108.3437 [INSPIRE].
  23. [23]
    T. Moroi, R. Sato and T.T. Yanagida, Extra matters decree the relatively heavy Higgs of mass about 125 GeV in the supersymmetric model, Phys. Lett. B 709 (2012) 218 [arXiv:1112.3142] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  25. [25]
    C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].ADSGoogle Scholar
  26. [26]
    A.D. Linde, Decay of the false vacuum at finite temperature, Nucl. Phys. B 216 (1983) 421 [Erratum ibid. B 223 (1983) 544] [INSPIRE].
  27. [27]
    A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev. D 54 (1996) 5824 [hep-ph/9602414] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C. Le Mouel, Optimal charge and color breaking conditions in the MSSM, Nucl. Phys. B 607 (2001) 38 [hep-ph/0101351] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    C. Le Mouel, Charge and color breaking conditions associated to the top quark Yukawa coupling, Phys. Rev. D 64 (2001) 075009 [hep-ph/0103341] [INSPIRE].ADSGoogle Scholar
  30. [30]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, FeynHiggs 2.7, Nucl. Phys. Proc. Suppl. 205-206 (2010) 152 [arXiv:1007.0956] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].
  33. [33]
    M. Misiak, H. Asatrian, K. Bieri, M. Czakon, A. Czarnecki, et al., Estimate of \( B\left( {\overline B \to {{X}_s} \gamma } \right)at o\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Degrassi, P. Gambino and P. Slavich, SusyBSG: a Fortran code for BR(BX s γ) in the MSSM with minimal flavor violation, Comput. Phys. Commun. 179 (2008) 759 [arXiv:0712.3265] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J.S. Conway, Pretty Good Simulation of high energy collisions (PGS4), http://www.physics.ucdavis.edu/~conway/research/research.html.
  37. [37]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  38. [38]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7TeV \) proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    CMS collaboration, Search for supersymmetry in all-hadronic events with missing energy, PAS-SUS-11-004.Google Scholar
  40. [40]
    CMS collaboration, Search for supersymmetry in all-hadronic events with α T, PAS-SUS-11-003.Google Scholar
  41. [41]
    CMS collaboration, Search for supersymmetry with the razor variables at CMS, PAS-SUS-11-008.Google Scholar
  42. [42]
    ATLAS collaboration, G. Aad et al., Search for diphoton events with large missing transverse momentum in 1 fb 1 of 7 TeV proton-proton collision data with the ATLAS detector, Phys. Lett. B 710 (2012) 519 [arXiv:1111.4116] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    CMS collaboration, Search for supersymmetry in events with photons, jets and missing energy, PAS-SUS-11-009.Google Scholar
  44. [44]
    ATLAS collaboration, G. Aad et al., Search for heavy long-lived charged particles with the ATLAS detector in pp collisions at \( \sqrt {s} = 7TeV \), Phys. Lett. B 703 (2011) 428 [arXiv:1106.4495] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    CMS collaboration, Search for heavy stable charged particles, PAS-EXO-11-022.Google Scholar
  46. [46]
    CMS collaboration, Update on searches for new physics in CMS, CERN PH-LHC Seminar.Google Scholar
  47. [47]
    Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    ATLAS collaboration, G. Aad et al., Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in \( \sqrt {s} = 7TeV \) proton-proton collisions, Phys. Lett. B 709 (2012) 137 [arXiv:1110.6189] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    H. Baer, V. Barger, A. Lessa and X. Tata, LHC discovery potential for supersymmetry with \( \sqrt {s} = 7TeV \) and 5.30 fb −1 , Phys. Rev. D 85 (2012) 051701 [arXiv:1112.3044] [INSPIRE].ADSGoogle Scholar
  50. [50]
    CMS collaboration, LHC SUSY discovery potential, CMS-CR-2006-049 (2006).Google Scholar
  51. [51]
    H. Baer, V. Barger, A. Lessa and X. Tata, Supersymmetry discovery potential of the LHC at \( \sqrt {s} = {1}0TeV \) and 14 TeV without and with missing E T , JHEP 09 (2009) 063 [arXiv:0907.1922] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    E. Nakamura and S. Shirai, Discovery potential for low-scale gauge mediation at early LHC, JHEP 03 (2011) 115 [arXiv:1010.5995] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T. Moroi and Y. Okada, Radiative corrections to Higgs masses in the supersymmetric model with an extra family and antifamily, Mod. Phys. Lett. A 7 (1992) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Moroi and Y. Okada, Upper bound of the lightest neutral Higgs mass in extended supersymmetric standard models, Phys. Lett. B 295 (1992) 73 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K. Babu, I. Gogoladze and C. Kolda, Perturbative unification and Higgs boson mass bounds, hep-ph/0410085 [INSPIRE].
  56. [56]
    K. Babu, I. Gogoladze, M.U. Rehman and Q. Shafi, Higgs boson mass, sparticle spectrum and little hierarchy problem in extended MSSM, Phys. Rev. D 78 (2008) 055017 [arXiv:0807.3055] [INSPIRE].ADSGoogle Scholar
  57. [57]
    S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Asano, T. Moroi, R. Sato and T.T. Yanagida, Non-anomalous discrete R-symmetry, extra matters and enhancement of the lightest SUSY Higgs mass, Phys. Lett. B 705 (2011) 337 [arXiv:1108.2402] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A. Djouadi, J.-L. Kneur and G. Moultaka, Suspect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Motoi Endo
    • 1
    • 2
  • Koichi Hamaguchi
    • 1
    • 2
  • Sho Iwamoto
    • 1
  • Norimi Yokozaki
    • 1
  1. 1.Department of PhysicsUniversity of TokyoTokyoJapan
  2. 2.Institute for the Physics and Mathematics of the Universe (IPMU)University of TokyoChibaJapan

Personalised recommendations