Generalized Kähler geometry in (2, 1) superspace

  • Chris Hull
  • Ulf Lindström
  • Martin Roček
  • Rikard von Unge
  • Maxim Zabzine
Article

Abstract

Two-dimensional (2, 2) supersymmetric nonlinear sigma models can be described in (2, 2), (2, 1) or (1, 1) superspaces. Each description emphasizes different aspects of generalized Kähler geometry. We investigate the reduction from (2, 2) to (2, 1) superspace. This has some interesting nontrivial features arising from the elimination of nondynamical fields. We compare quantization in the different superspace formulations.

Keywords

Differential and Algebraic Geometry Extended Supersymmetry Superspaces 

References

  1. [1]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford University, Oxford, U.K. (2004), math/0401221 [INSPIRE].
  3. [3]
    U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler manifolds and off-shell supersymmetry, Commun. Math. Phys. 269 (2007) 833 [hep-th/0512164] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    C.M. Hull, U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler geometry and gerbes, JHEP 10 (2009) 062 [arXiv:0811.3615] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Hull and E. Witten, Supersymmetric σ-models and the heterotic string, Phys. Lett. B 160 (1985) 398 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    C. Hull, σ-model β-functions and string compactifications, Nucl. Phys. B 267 (1986) 266 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    M. Dine and N. Seiberg, (2, 0) superspace, Phys. Lett. B 180 (1986) 364 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    P.S. Howe and G. Papadopoulos, Ultraviolet behavior of two-dimensional supersymmetric nonlinear σ-models, Nucl. Phys. B 289 (1987) 264 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P.S. Howe and G. Papadopoulos, Further remarks on the geometry of two-dimensional nonlinear σ-models, Class. Quant. Grav. 5 (1988) 1647 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  10. [10]
    M. Abou Zeid and C.M. Hull, The gauged (2, 1) heterotic σ-model, Nucl. Phys. B 513 (1998) 490 [hep-th/9708047] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    C.M. Hull, U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Calabi-Yau metric and generalized Monge-Ampere equation, JHEP 08 (2010) 060 [arXiv:1005.5658] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S.J. Gates Jr., C. Hull and M. Roček, Twisted multiplets and new supersymmetric nonlinear σ-models, Nucl. Phys. B 248 (1984) 157 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Buscher, U. Lindström and M. Roček, New supersymmetric σ-models with Wess-Zumino terms, Phys. Lett. B 202 (1988) 94 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C. Hull, G. Papadopoulos and B.J. Spence, Gauge symmetries for (p, q) supersymmetric σ-models, Nucl. Phys. B 363 (1991) 593 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    U. Lindström, M. Roček, I. Ryb, R. von Unge and M. Zabzine, New N = (2, 2) vector multiplets, JHEP 08 (2007) 008 [arXiv:0705.3201] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    U. Lindström, M. Roček, I. Ryb, R. von Unge and M. Zabzine, Nonabelian generalized gauge multiplets, JHEP 02 (2009) 020 [arXiv:0808.1535] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Hull and P. Townsend, Finiteness and conformal invariance in nonlinear σ-models, Nucl. Phys. B 274 (1986) 349 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    C.M. Hull, Superstring compactifications with torsion and space-time supersymmetry, in the proceedings of the First Torino Meeting on Superunification and Extra Dimensions, September 22-28, Torino, Italy (1985), R. D’Auria and P. Fre eds., World Scientific, Singapore (1986).Google Scholar
  19. [19]
    C. Hull, Compactifications of the heterotic superstring, Phys. Lett. B 178 (1986) 357 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    T. Buscher, Quantum corrections and extended supersymmetry in new σ-models, Phys. Lett. B 159 (1985) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M.T. Grisaru, M. Massar, A. Sevrin and J. Troost, The quantum geometry of N = (2, 2) nonlinear σ-models, Phys. Lett. B 412 (1997) 53 [hep-th/9706218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Chris Hull
    • 1
  • Ulf Lindström
    • 2
  • Martin Roček
    • 3
  • Rikard von Unge
    • 4
  • Maxim Zabzine
    • 2
  1. 1.The Blackett LaboratoryImperial College LondonLondonU.K.
  2. 2.Department of Physics and Astronomy Uppsala UniversityUppsalaSweden
  3. 3.C.N.Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.
  4. 4.Institute for Theoretical PhysicsMasaryk UniversityBrnoCzech Republic

Personalised recommendations