Advertisement

Four-dimensional SCFTs from M5-branes

  • Ibrahima Bah
  • Christopher Beem
  • Nikolay Bobev
  • Brian Wecht
Article

Abstract

We engineer a large new set of four-dimensional \(\mathcal{N} = 1\) superconformal field theories by wrapping M5-branes on complex curves. We present new supersymmetric AdS 5 M-theory backgrounds which describe these fixed points at large N, and then directly construct the dual four-dimensional CFTs for a certain subset of these solutions. Additionally, we provide a direct check of the central charges of these theories by using the M5-brane anomaly polynomial. This is a companion paper which elaborates upon results reported in [1].

Keywords

Conformal Field Models in String Theory Supersymmetric gauge theory AdS-CFT Correspondence M-Theory 

References

  1. [1]
    I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT dual pairs from M5-branes on riemann surfaces, arXiv:1112.5487 [INSPIRE].
  2. [2]
    D. Gaiotto, N = 2 dualities, arXiv:0904.2715 [INSPIRE].
  3. [3]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].
  4. [4]
    L.F. Alday, F. Benini and Y. Tachikawa, Liouville/Toda central charges from M 5-branes, Phys. Rev. Lett. 105 (2010) 141601 [arXiv:0909.4776] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. Kanno, Y. Matsuo, S. Shiba and Y. Tachikawa, N = 2 gauge theories and degenerate fields of Toda theory, Phys. Rev. D 81 (2010) 046004 [arXiv:0911.4787] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS states, arXiv:1006.0146 [INSPIRE].
  7. [7]
    Y. Tachikawa, N = 2 S-duality via outer-automorphism twists, J. Phys. A 44 (2011) 182001 [arXiv:1009.0339] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    D. Nanopoulos and D. Xie, N = 2 generalized superconformal quiver gauge theory, arXiv:1006.3486 [INSPIRE].
  9. [9]
    O. Chacaltana and J. Distler, Tinkertoys for Gaiotto duality, JHEP 11 (2010) 099 [arXiv:1008.5203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing in coupled 2D-4D systems, arXiv:1103.2598 [INSPIRE].
  11. [11]
    S. Cecotti and C. Vafa, Classification of complete N = 2 supersymmetric theories in 4 dimensions, arXiv:1103.5832 [INSPIRE].
  12. [12]
    Y. Tachikawa and S. Terashima, Seiberg-Witten geometries revisited, JHEP 09 (2011) 010 [arXiv:1108.2315] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M. Alim et al., BPS quivers and spectra of complete N = 2 quantum field theories, arXiv:1109.4941 [INSPIRE].
  14. [14]
    D. Gaiotto, G.W. Moore and Y. Tachikawa, On 6D N = (2, 0) theory compactified on a Riemann surface with finite area, arXiv:1110.2657 [INSPIRE].
  15. [15]
    M. Alim et al., N = 2 quantum field theories and their BPS quivers, arXiv:1112.3984 [INSPIRE].
  16. [16]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, arXiv:0904.4466 [INSPIRE].
  18. [18]
    F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    I. Bah and B. Wecht, New N = 1 superconformal field theories in four dimensions, arXiv:1111.3402 [INSPIRE].
  20. [20]
    K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS 5 solutions of M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  22. [22]
    E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B 463 (1996) 420 [hep-th/9511222] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    J.P. Gauntlett, Branes, calibrations and supergravity, hep-th/0305074 [INSPIRE].
  25. [25]
    T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, arXiv:1108.4389 [INSPIRE].
  26. [26]
    M.T. Anderson, C. Beem, N. Bobev and L. Rastelli, Holographic uniformization, arXiv:1109.3724 [INSPIRE].
  27. [27]
    G. Bonelli and A. Tanzini, Hitchin systems, N = 2 gauge theories and W-gravity, Phys. Lett. B 691 (2010) 111 [arXiv:0909.4031] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    D. Anselmi, D. Freedman, M.T. Grisaru and A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103 [hep-th/9610234] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  30. [30]
    J.A. Harvey, R. Minasian and G.W. Moore, Non-Abelian tensor multiplet anomalies, JHEP 09 (1998) 004 [hep-th/9808060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    P. Yi, Anomaly of (2, 0) theories, Phys. Rev. D 64 (2001) 106006 [hep-th/0106165] [INSPIRE].ADSGoogle Scholar
  32. [32]
    K.A. Intriligator, Anomaly matching and a Hopf-Wess-Zumino term in 6D, N = (2, 0) field theories, Nucl. Phys. B 581 (2000) 257 [hep-th/0001205] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Kulaxizi and A. Parnachev, Energy flux positivity and unitarity in CFTs, Phys. Rev. Lett. 106 (2011) 011601 [arXiv:1007.0553] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    R. Rattazzi, S. Rychkov and A. Vichi, Central charge bounds in 4D conformal field theory, Phys. Rev. D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, arXiv:1109.5176 [INSPIRE].
  37. [37]
    H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistent nonlinear KK reduction of 11D supergravity on AdS7 × S4 and selfduality in odd dimensions, Phys. Lett. B 469 (1999) 96 [hep-th/9905075] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistency of the AdS7 × S4 reduction and the origin of selfduality in odd dimensions, Nucl. Phys. B 581 (2000) 179 [hep-th/9911238] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.T. Liu and R. Minasian, Black holes and membranes in AdS7, Phys. Lett. B 457 (1999) 39 [hep-th/9903269] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    S. Cucu, H. Lü and J.F. Vazquez-Poritz, A supersymmetric and smooth compactification of M-theory to AdS5, Phys. Lett. B 568 (2003) 261 [hep-th/0303211] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Cucu, H. Lü and J.F. Vazquez-Poritz, Interpolating from AdS D−2 × S 2 to AdS D, Nucl. Phys. B 677 (2004) 181 [hep-th/0304022] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    Y. Tachikawa and B. Wecht, Explanation of the central charge ratio 27/32 in four-dimensional renormalization group flows between superconformal theories, Phys. Rev. Lett. 103 (2009) 061601 [arXiv:0906.0965] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    J.P. Gauntlett, O.A. Mac Conamhna, T. Mateos and D. Waldram, AdS spacetimes from wrapped M 5 branes, JHEP 11 (2006) 053 [hep-th/0605146] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    D. Martelli, J. Sparks and S.-T. Yau, The geometric dual of a-maximisation for Toric Sasaki-Einstein manifolds, Commun. Math. Phys. 268 (2006) 39 [hep-th/0503183] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  47. [47]
    D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys. 280 (2008) 611 [hep-th/0603021] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  48. [48]
    R. Eager, Equivalence of A-maximization and volume minimization, arXiv:1011.1809 [INSPIRE].
  49. [49]
    M. Gabella and J. Sparks, Generalized geometry in AdS/CFT and volume minimization, Nucl. Phys. B 861 (2012) 53 [arXiv:1011.4296] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly marginal deformations and global symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    K. Maruyoshi, M. Taki, S. Terashima and F. Yagi, New Seiberg dualities from N = 2 dualities, JHEP 09 (2009) 086 [arXiv:0907.2625] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    K.A. Intriligator and N. Seiberg, Phases of N = 1 supersymmetric gauge theories in four-dimensions, Nucl. Phys. B 431 (1994) 551 [hep-th/9408155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    E. O Colgain, J.-B. Wu and H. Yavartanoo, On the generality of the LLM geometries in M-theory, JHEP 04 (2011) 002 [arXiv:1010.5982] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    Y. Tachikawa, Six-dimensional D(N) theory and four-dimensional SO-USp quivers, JHEP 07 (2009) 067 [arXiv:0905.4074] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged maximally extended supergravity in seven-dimensions, Phys. Lett. B 143 (1984) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five-dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  59. [59]
    J.P. Gauntlett and S. Pakis, The geometry of D = 11 Killing spinors, JHEP 04 (2003) 039 [hep-th/0212008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5 solutions of type IIB supergravity, Class. Quant. Grav. 23 (2006) 4693 [hep-th/0510125] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  61. [61]
    A. Almuhairi and J. Polchinski, Magnetic AdS × R2: supersymmetry and stability, arXiv:1108.1213 [INSPIRE].
  62. [62]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and electric AdS solutions in string- and M-theory, arXiv:1112.4195 [INSPIRE].
  63. [63]
    M. Cvetič, H. Lü, D.N. Page and C. Pope, New Einstein-Sasaki spaces in five and higher dimensions, Phys. Rev. Lett. 95 (2005) 071101 [hep-th/0504225] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    M. Cvetič, H. Lü, D.N. Page and C. Pope, New Einstein-Sasaki and Einstein spaces from Kerr-de Sitter, JHEP 07 (2009) 082 [hep-th/0505223] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J.P. Gauntlett, E. O Colgain and O. Varela, Properties of some conformal field theories with M-theory duals, JHEP 02 (2007) 049 [hep-th/0611219] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Ibrahima Bah
    • 1
  • Christopher Beem
    • 2
  • Nikolay Bobev
    • 2
  • Brian Wecht
    • 3
    • 4
  1. 1.Michigan Center for Theoretical PhysicsUniversity of MichiganAnn ArborU.S.A.
  2. 2.Simons Center for Geometry and PhysicsStony Brook UniversityStony BrookU.S.A.
  3. 3.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeU.S.A.
  4. 4.Centre for Research in String TheoryQueen Mary, University of LondonLondonU.K.

Personalised recommendations