A black ring with two angular momenta in Taub-NUT

  • Iosif Bena
  • Stefano Giusto
  • Clément RuefEmail author
Open Access


We use the recently-constructed explicit duality transformation that relates a rotating \( \overline {{\text{D}}6} {\text{ - D}}4{\text{ - D}}2{\text{ - D}}0 \) black hole solution to a rotating M5-M2-P black string to construct a non-supersymmetric black ring in Taub-NUT that has two angular momenta, as well as M2 charges and M5 dipole moments. This is the first black ring solution that has both dipole charges and rotation along the S 2 of the horizon, and hence can be thought of as the “Pomeransky-Senkov” version of the M5-M2 black ring in Taub-NUT. Its physics should provide a testing ground for the applicability of the blackfold approach to charged rotating black branes, and should elucidate the phase space of charged dipole rings in various backgrounds.


Black Holes in String Theory D-branes 


  1. [1]
    R. Emparan and H.S. Reall, A rotating black ring in five dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    R. Emparan, Rotating circular strings and infinite non-uniqueness of black rings, JHEP 03 (2004) 064 [hep-th/0402149] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A supersymmetric black ring, Phys. Rev. Lett. 93 (2004) 211302 [hep-th/0407065] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    I. Bena and N.P. Warner, One ring to rule them all…and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [SPIRES].MathSciNetzbMATHGoogle Scholar
  5. [5]
    H. Elvang, R. Emparan, D. Mateos and H.S. Reall, Supersymmetric black rings and three-charge supertubes, Phys. Rev. D 71 (2005) 024033 [hep-th/0408120] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    H. Elvang, R. Emparan and P. Figueras, Phases of five-dimensional black holes, JHEP 05 (2007) 056 [hep-th/0702111] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The phase structure of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfold approach for higher-dimensional black holes, Acta Phys. Polon. B 40 (2009) 3459 [SPIRES].MathSciNetGoogle Scholar
  11. [11]
    G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Thermodynamics of the hot BIon, arXiv:1101.1297 [SPIRES].
  12. [12]
    K. Goldstein and S. Katmadas, Almost BPS black holes, JHEP 05 (2009) 058 [arXiv:0812.4183] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    I. Bena, G. Dall’Agata, S. Giusto, C. Ruef and N.P. Warner, Non-BPS black rings and black holes in Taub-NUT, JHEP 06 (2009) 015 [arXiv:0902.4526] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Multi-center non-BPS black holes — the solution, JHEP 11 (2009) 032 [arXiv:0908.2121] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Supergravity solutions from floating branes, JHEP 03 (2010) 047 [arXiv:0910.1860] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    N. Bobev and C. Ruef, The nuts and bolts of Einstein-Maxwell solutions, JHEP 01 (2010) 124 [arXiv:0912.0010] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    N. Bobev, B. Niehoff and N.P. Warner, Hair in the back of a throat: non-supersymmetric multi-center solutions from Kähler manifolds, arXiv:1103.0520 [SPIRES].
  18. [18]
    G. Dall’Agata, S. Giusto and C. Ruef, U-duality and non-BPS solutions, JHEP 02 (2011) 074 [arXiv:1012.4803] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    G. Bossard and C. Ruef, work in progress.Google Scholar
  20. [20]
    B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, hep-th/0304094 [SPIRES].
  21. [21]
    H. Elvang, R. Emparan, D. Mateos and H.S. Reall, Supersymmetric 4D rotating black holes from 5D black rings, JHEP 08 (2005) 042 [hep-th/0504125] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    D. Gaiotto, A. Strominger and X. Yin, 5D black rings and 4D black holes, JHEP 02 (2006) 023 [hep-th/0504126] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    I. Bena, P. Kraus and N.P. Warner, Black rings in Taub-NUT, Phys. Rev. D 72 (2005) 084019 [hep-th/0504142] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    J. Camps, R. Emparan, P. Figueras, S. Giusto and A. Saxena, Black rings in Taub-NUT and D0-D6 interactions, JHEP 02 (2009) 021 [arXiv:0811.2088] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    A.A. Pomeransky and R.A. Sen’kov, Black ring with two angular momenta, hep-th/0612005 [SPIRES].
  26. [26]
    J. Hoskisson, A charged doubly spinning black ring, Phys. Rev. D 79 (2009) 104022 [arXiv:0808.3000] [SPIRES].ADSGoogle Scholar
  27. [27]
    D.V. Gal’tsov and N.G. Scherbluk, Three-charge doubly rotating black ring, Phys. Rev. D 81 (2010) 044028 [arXiv:0912.2771] [SPIRES].ADSGoogle Scholar
  28. [28]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    V. Balasubramanian, E.G. Gimon and T.S. Levi, Four dimensional black hole microstates: from D-branes to spacetime foam, JHEP 01 (2008) 056 [hep-th/0606118] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    W. Israel and G.A. Wilson, A class of stationary electromagnetic vacuum fields, J. Math. Phys. 13 (1972) 865 [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    S. Giusto and S.D. Mathur, Geometry of D1 − D5− P bound states, Nucl. Phys. B 729 (2005) 203 [hep-th/0409067] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Institut de Physique ThéoriqueCEA SaclayGif sur YvetteFrance
  2. 2.Dipartimento di Fisica “Galileo Galilei”Università di PadovaPadovaItaly
  3. 3.INFN, Sezione di PadovaPadovaItaly
  4. 4.Max Planck Institute for GravitationAlbert Einstein InstituteGolmGermany

Personalised recommendations