Advertisement

Simulating graviton production at hadron colliders

  • Priscila de AquinoEmail author
  • Kaoru Hagiwara
  • Qiang Li
  • Fabio Maltoni
Article

Abstract

Spin-2 particles and in particular gravitons are predicted in many new physics scenarios at the TeV scale. Depending on the details of models such new states might show up as a continuum, massless particles, or TeV scale resonances. Correspondingly, very different discovery signatures should be exploited, from the search of excesses in events with multi jets and large missing transverse energy, to resonances in weak boson or jet pair productions. We present a very general and flexible implementation in Mad-Graph/MadEvent of spin-2 particles interacting with the standard model particles via the energy momentum tensor, which encompasses all of the most popular TeV scale models featuring gravitons. By merging matrix elements with parton shower, we can generate inclusive samples of graviton + jets at the hadron colliders in several scenarios (ADD, zero-mass graviton and RS). We compare and validate our results against the corresponding next-to-leading order QCD calculations.

Keywords

Jets Large Extra Dimensions Beyond Standard Model NLO Computations 

References

  1. [1]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].ADSGoogle Scholar
  2. [2]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].ADSGoogle Scholar
  3. [3]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [SPIRES].ADSGoogle Scholar
  4. [4]
    G.R. Dvali, G. Gabadadze, M. Kolanovic and F. Nitti, Scales of gravity, Phys. Rev. D 65 (2002) 024031 [hep-th/0106058] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    G. Dvali, Black holes and large-N species solution to the hierarchy problem, Fortsch. Phys. 58 (2010) 528 [arXiv:0706.2050] [SPIRES].MathSciNetzbMATHCrossRefADSGoogle Scholar
  6. [6]
    G. Dvali and M. Redi, Black hole bound on the number of species and quantum gravity at LHC, Phys. Rev. D 77 (2008) 045027 [arXiv:0710.4344] [SPIRES].ADSGoogle Scholar
  7. [7]
    X. Calmet and S.D.H. Hsu, TeV gravity in four dimensions?, Phys. Lett. B 663 (2008) 95 [arXiv:0711.2306] [SPIRES].ADSGoogle Scholar
  8. [8]
    X. Calmet, S.D.H. Hsu and D. Reeb, Quantum gravity at a TeV and the renormalization of Newton’s constant, Phys. Rev. D 77 (2008) 125015 [arXiv:0803.1836] [SPIRES].ADSGoogle Scholar
  9. [9]
    X. Calmet, S.D.H. Hsu and D. Reeb, Grand unification and enhanced quantum gravitational effects, Phys. Rev. Lett. 101 (2008) 171802 [arXiv:0805.0145] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. [11]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [12]
    J.M.Butterworthet al., The tools and Monte Carlo working group summary report, arXiv:1003.1643 [SPIRES].
  13. [13]
    T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles, Eur. Phys. J. C 56 (2008) 435 [arXiv:0805.2554] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    S. Karg, M. Krämer, Q. Li and D. Zeppenfeld, NLO QCD corrections to graviton production at hadron colliders, Phys. Rev. D 81 (2010) 094036 [arXiv:0911.5095] [SPIRES].ADSGoogle Scholar
  18. [18]
    P. Mathews, V. Ravindran and K. Sridhar, NLO-QCD corrections to dilepton production in the Randall-Sundrum model, JHEP 10 (2005) 031 [hep-ph/0506158] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    Q. Li, C.S. Li and L.L. Yang, Soft gluon resummation effects in single graviton production at the CERN Large Hadron Collider in the Randall-Sundrum model, Phys. Rev. D 74 (2006) 056002 [hep-ph/0606045] [SPIRES].ADSGoogle Scholar
  20. [20]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [SPIRES].
  23. [23]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W +2 jet and Z +2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [SPIRES].ADSGoogle Scholar
  26. [26]
    T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    E.A. Mirabelli, M. Perelstein and M.E. Peskin, Collider signatures of new large space dimensions, Phys. Rev. Lett. 82 (1999) 2236 [hep-ph/9811337] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    D.J. Kapner et al., Tests of the gravitational inverse-square law below the dark-energy length scale, Phys. Rev. Lett. 98 (2007) 021101 [hep-ph/0611184] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    N. Kaloper, J. March-Russell, G.D. Starkman and M. Trodden, Compact hyperbolic extra dimensions: branes, Kaluza-Klein modes and cosmology, Phys. Rev. Lett. 85 (2000) 928 [hep-ph/0002001] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. [31]
    K.R. Dienes and A. Mafi, Shadows of the Planck scale: the changing face of compactification geometry, Phys. Rev. Lett. 88 (2002) 111602 [hep-th/0111264] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    G.F. Giudice, T. Plehn and A. Strumia, Graviton collider effects in one and more large extra dimensions, Nucl. Phys. B 706 (2005) 455 [hep-ph/0408320] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    LEP Exotica Working Group, LEP Exotica W G 200403, (2004).Google Scholar
  34. [34]
    CDF collaboration, T. Aaltonen et al., Search for large extra dimensions in final states containing one photon or jet and large missing transverse energy produced in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 181602 [arXiv:0807.3132] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    D0 collaboration, V.M. Abazov et al., Search for large extra dimensions via single photon plus missing energy final states at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 011601 [arXiv:0803.2137] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    CDF collaboration, A. Abulencia et al., Search for large extra dimensions in the production of jets and missing transverse energy in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 97 (2006) 171802 [hep-ex/0605101] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    H. Davoudiasl, Echoes from a warped dimension, Nucl. Phys. Proc. Suppl. 200 202 (2010) 149 [arXiv:0909.1587] [SPIRES].CrossRefGoogle Scholar
  38. [38]
    CDF collaboration, T. Aaltonen et al., A search for high-mass resonances decaying to dimuons at CDF, Phys. Rev. Lett. 102 (2009) 091805 [arXiv:0811.0053] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    D0 collaboration, V.M. Abazov et al., Search for Randall-Sundrum gravitons with 1 fb −1 of data from \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 100 (2008) 091802 [arXiv:0710.3338] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    F. Larsen and F. Wilczek, Renormalization of black hole entropy and of the gravitational coupling constant, Nucl. Phys. B 458 (1996) 249 [hep-th/9506066] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    X. Calmet and P. de Aquino, Quantum gravity at the LHC, Eur. Phys. J. C 68 (2010) 305 [arXiv:0906.0363] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    X. Calmet and M. Feliciangeli, Bound on four-dimensional Planck mass, Phys. Rev. D 78 (2008) 067702 [arXiv:0806.4304] [SPIRES].ADSGoogle Scholar
  43. [43]
    X. Calmet, P. de Aquino and T.G. Rizzo, Massless versus Kaluza-Klein Gravitons at the LHC, Phys. Lett. B 682 (2010) 446 [arXiv:0910.1535] [SPIRES].ADSGoogle Scholar
  44. [44]
    H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11 (1991).Google Scholar
  45. [45]
    K. Hagiwara, H. Murayama and I. Watanabe, Search for the Yukawa interaction in the process \( {e^{+} }{e^{-} } \to t\overline t Z \) at TeV linear colliders, Nucl. Phys. B 367 (1991) 257 [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    K. Hagiwara, P. Konar, Q. Li, K. Mawatari and D. Zeppenfeld, Graviton production with 2 jets at the LHC in large extra dimensions, JHEP 04 (2008) 019 [arXiv:0801.1794] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    H. van Dam and M.J.G. Veltman, Massive and massless Yang-Mills and gravitational fields, Nucl. Phys. B 22 (1970) 397 [SPIRES].ADSGoogle Scholar
  48. [48]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    G. Corcella et al., HERW IG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    F. Krauss, A. Schalicke, S. Schumann and G. Soff, Simulating W/Z + jets production at the Tevatron, Phys. Rev. D 70 (2004) 114009 [hep-ph/0409106] [SPIRES].ADSGoogle Scholar
  51. [51]
    S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    L. Vacavant and I. Hinchliffe, Signals of models with large extra dimensions in ATLAS, J. Phys. G 27 (2001) 1839 [SPIRES].ADSGoogle Scholar
  53. [53]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Priscila de Aquino
    • 1
    • 2
    Email author
  • Kaoru Hagiwara
    • 3
  • Qiang Li
    • 4
  • Fabio Maltoni
    • 1
  1. 1.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Instituut voor Theoretische FysicaKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.KEK T heory Center and SokendaiTsukubaJapan
  4. 4.Paul Scherrer InstitutVilligen PSISwitzerland

Personalised recommendations