MadGraph 5: going beyond

  • Johan Alwall
  • Michel Herquet
  • Fabio Maltoni
  • Olivier Mattelaer
  • Tim Stelzer
Open Access


MadGraph 5 is the new version of the MadGraph matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several new output formats including C++ process libraries for Pythia 8, and full compatibility with FeynRules for new physics models implementation, allowing for event generation for any model that can be written in the form of a Lagrangian. MadGraph 5 builds on the same philosophy as the previous versions, and its design allows it to be used as a collaborative platform where theoretical, phenomenological and simulation projects can be developed and then distributed to the high-energy community. We describe the ideas and the most important developments of the code and illustrate its capabilities through a few simple phenomenological examples.


QCD Phenomenology 


  1. [1]
    A. Pukhov et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33, hep-ph/9908288 [SPIRES].
  2. [2]
    CompHEP collaboration, E. Boos et al., CompHEP 4.4: automatic computations from lagrangians to events, Nucl. Instrum. Meth. A 534 (2004) 250 [hep-ph/0403113] [SPIRES].ADSGoogle Scholar
  3. [3]
    A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
  4. [4]
    T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    T. Gleisberg et al., SHERPA 1.alpha, a proof-of-concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett. B 358 (1995) 332 [hep-ph/9507237] [SPIRES].ADSGoogle Scholar
  9. [9]
    P. Draggiotis, R.H.P. Kleiss and C.G. Papadopoulos, On the computation of multigluon amplitudes, Phys. Lett. B 439 (1998) 157 [hep-ph/9807207] [SPIRES].ADSGoogle Scholar
  10. [10]
    C. Duhr, S. Hoeche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP 08 (2006) 062 [hep-ph/0607057] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    M. Moretti, T. Ohl and J. Reuter, O’Mega: an optimizing matrix element generator, hep-ph/0102195 [SPIRES].
  12. [12]
    W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES].
  13. [13]
    W. Kilian, W HIZARD 1.0: a generic Monte-Carlo integration and event generation package for multi-particle processes. Manual, LC-TOOL-2001-039.Google Scholar
  14. [14]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    C.G. Papadopoulos and M. Worek, HELAC: a Monte Carlo generator for multi-jet processes, hep-ph/0606320 [SPIRES].
  16. [16]
    T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    N.D. Christensen et al., A comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [SPIRES].ADSGoogle Scholar
  19. [19]
    C. Duhr and B. Fuks, A superspace module for the FeynRules package, arXiv:1102.4191 [SPIRES].
  20. [20]
    C. Degrande et al., UFO — The Universal FeynRules Output.Google Scholar
  21. [21]
    T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    M.H. Seymour and C. Tevlin, TeVJet: a general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
  23. [23]
    K. Hasegawa, S. Moch and P. Uwer, Automating dipole subtraction, Nucl. Phys. Proc. Suppl. 183 (2008) 268 [arXiv:0807.3701] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    R. Frederix, T. Gehrmann and N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    G. Zanderighi, Recent theoretical progress in perturbative QCD, arXiv:0810.3524 [SPIRES].
  28. [28]
    R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3 jet production, JHEP 04 (2009) 077 [arXiv:0901.4101] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    C.F. Berger et al., Next-to-Leading Order QCD predictions for Z, γ + 3-jet distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [SPIRES].ADSGoogle Scholar
  32. [32]
    C.F. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [SPIRES].CrossRefGoogle Scholar
  43. [43]
    N. Lavesson and L. Lönnblad, W + jets matrix elements and the dipole cascade, JHEP 07 (2005) 054 [hep-ph/0503293] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [SPIRES].
  46. [46]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    F. Krauss, A. Schalicke, S. Schumann and G. Soff, Simulating W/Z + jets production at the Tevatron, Phys. Rev. D 70 (2004) 114009 [hep-ph/0409106] [SPIRES].ADSGoogle Scholar
  48. [48]
    C. Englert, T. Plehn, P. Schichtel and S. Schumann, Jets plus missing energy with an autofocus, Phys. Rev. D 83 (2011) 095009 [arXiv:1102.4615] [SPIRES].ADSGoogle Scholar
  49. [49]
    J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production, JHEP 08 (2003) 007 [hep-ph/0305252] [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    J. Alwall et al., Aloha — Automatic helas routines for helicity amplitude calculations in any quantum field theory.Google Scholar
  55. [55]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  56. [56]
    H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11.Google Scholar
  57. [57]
    G.C. Cho et al., Weak boson fusion production of supersymmetric particles at the LHC, Phys. Rev. D 73 (2006) 054002 [hep-ph/0601063] [SPIRES].ADSGoogle Scholar
  58. [58]
    A. Denner, H. Eck, O. Hahn and J. Kublbeck, Feynman rules for fermion number violating interactions, Nucl. Phys. B 387 (1992) 467 [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    M.L. Mangano and S.J. Parke, Multi-parton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [SPIRES].ADSCrossRefGoogle Scholar
  61. [61]
    F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color-flow decomposition of QCD amplitudes, Phys. Rev. D 67 (2003) 014026 [hep-ph/0209271] [SPIRES].ADSGoogle Scholar
  62. [62]
    F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    S. Frixione, Colourful FKS subtraction, arXiv:1106.0155 [SPIRES].
  65. [65]
    T. Han, I. Lewis and T. McElmurry, QCD corrections to scalar diquark production at hadron colliders, JHEP 01 (2010) 123 [arXiv:0909.2666] [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    J. Alwall et al., A Les Houches interface for BSM generators, arXiv:0712.3311 [SPIRES].
  68. [68]
    K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles, Eur. Phys. J. C 56 (2008) 435 [arXiv:0805.2554] [SPIRES].ADSCrossRefGoogle Scholar
  69. [69]
    K. Hagiwara, K. Mawatari and Y. Takaesu, HELAS and MadGraph with spin-3/2 particles, Eur. Phys. J. C 71 (2011) 1529 [arXiv:1010.4255] [SPIRES].ADSGoogle Scholar
  70. [70]
    P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    N. D. Christensen and C. Speckner, Automated validation of FeynRules models.Google Scholar
  72. [72]
    C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev. D 83 (2011) 034006 [arXiv:1008.3869] [SPIRES].ADSGoogle Scholar
  73. [73]
    J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: a roadmap, Nucl. Phys. B 843 (2011) 638 [arXiv:1008.3562] [SPIRES].ADSCrossRefGoogle Scholar
  74. [74]
    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant new physics in top pair production at hadron colliders, JHEP 03 (2011) 125 [arXiv:1010.6304] [SPIRES].ADSCrossRefGoogle Scholar
  75. [75]
    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, An effective approach to same sign top pair production at the LHC and the forward-backward asymmetry at the Tevatron, arXiv:1104.1798 [SPIRES].
  76. [76]
    S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES].
  77. [77]
  78. [78]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  79. [79]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Johan Alwall
    • 1
  • Michel Herquet
    • 2
  • Fabio Maltoni
    • 3
  • Olivier Mattelaer
    • 3
  • Tim Stelzer
    • 4
  1. 1.Theoretical Physics DepartmentFermi National Accelerator LaboratoryBataviaU.S.A.
  2. 2.Nikhef Theory GroupAmsterdamThe Netherlands
  3. 3.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaU.S.A.

Personalised recommendations