Advertisement

Electroweak corrections to dilepton + jet production at hadron colliders

  • Ansgar Denner
  • Stefan Dittmaier
  • Tobias KasprzikEmail author
  • Alexander Mück
Article

Abstract

The first calculation of the next-to-leading-order electroweak corrections to Z-boson + jet hadroproduction including leptonic Z-boson decays is presented, i.e. to the production of a charged lepton-anti-lepton final state in association with one hard jet at the LHC and the Tevatron. The Z-boson resonance is treated consistently using the complex-mass scheme, and all off-shell effects as well as the contributions of the intermediate photon are taken into account. The corresponding next-to-leading-order QCD corrections have also been recalculated. The full calculation is implemented in a flexible Monte Carlo code. Numerical results for cross sections and distributions of this Standard Model benchmark process are presented for the Tevatron and the LHC.

Keywords

NLO Computations Hadronic Colliders Standard Model 

References

  1. [1]
    S. Haywood et al., Electroweak physics, in Standard Model Physics (And More) At The LHC, G. Altareli and M. Mangano eds., Geneva Switzerland (1999), pg. 117 [hep-ph/0003275] [SPIRES].
  2. [2]
    TeV4LHC-Top and Electroweak Working Group collaboration, C.E. Gerber et al., Tevatron-for-LHC Report: Top and Electroweak Physics, arXiv:0705.3251 [SPIRES].
  3. [3]
    R. Hamberg, W.L. van Neerven and T. Matsuura, A Complete calculation of the order α S 2 correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid B 644 (2002) 403] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    W.L. van Neerven and E.B. Zijlstra, The O(α S 2 ) corrected Drell-Yan K factor in the DIS and MS scheme, Nucl. Phys. B 382 (1992) 11 [Erratum ibid B 680 (2004) 513] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [SPIRES].ADSGoogle Scholar
  8. [8]
    K. Melnikov and F. Petriello, The W boson production cross section at the LHC through O(α s 2), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through O(α s 2 ), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [SPIRES].ADSGoogle Scholar
  10. [10]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [SPIRES].ADSGoogle Scholar
  12. [12]
    E. Laenen and L. Magnea, Threshold resummation for electroweak annihilation from DIS data, Phys. Lett. B 632 (2006) 270 [hep-ph/0508284] [SPIRES].ADSGoogle Scholar
  13. [13]
    A. Idilbi, X.-d. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [SPIRES].ADSGoogle Scholar
  14. [14]
    V. Ravindran and J. Smith, Threshold corrections to rapidity distributions of Z and W ± bosons beyond N 2 LO at hadron colliders, Phys. Rev. D 76 (2007) 114004 [arXiv:0708.1689] [SPIRES].ADSGoogle Scholar
  15. [15]
    S. Frixione and B.R. Webber, The MC@NLO 3.3 event generator, hep-ph/0612272 [SPIRES].
  16. [16]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    P.B. Arnold and R.P. Kauffman, W and Z production at next-to-leading order: From large q T to small, Nucl. Phys. B 349 (1991) 381 [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    C. Balázs, J.-w. Qiu and C.P. Yuan, Effects of QCD resummation on distributions of leptons from the decay of electroweak vector bosons, Phys. Lett. B 355 (1995) 548 [hep-ph/9505203] [SPIRES].ADSGoogle Scholar
  20. [20]
    C. Balázs and C.P. Yuan, Soft gluon effects on lepton pairs at hadron colliders, Phys. Rev. D 56 (1997) 5558 [hep-ph/9704258] [SPIRES].ADSGoogle Scholar
  21. [21]
    R.K. Ellis, D.A. Ross and S. Veseli, Vector boson production in hadronic collisions, Nucl. Phys. B 503 (1997) 309 [hep-ph/9704239] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    R.K. Ellis and S. Veseli, W and Z transverse momentum distributions: Resummation in q T space, Nucl. Phys. B 511 (1998) 649 [hep-ph/9706526] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    J.-w. Qiu and X.-f. Zhang, QCD prediction for heavy boson transverse momentum distributions, Phys. Rev. Lett. 86 (2001) 2724 [hep-ph/0012058] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    J.-w. Qiu and X.-f. Zhang, Role of the nonperturbative input in QCD resummed Drell-Yan Q T -distributions, Phys. Rev. D 63 (2001) 114011 [hep-ph/0012348] [SPIRES].ADSGoogle Scholar
  25. [25]
    A. Kulesza and W.J. Stirling, Soft gluon resummation in transverse momentum space for electroweak boson production at hadron colliders, Eur. Phys. J. C 20 (2001) 349 [hep-ph/0103089] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    A. Kulesza, G.F. Sterman and W. Vogelsang, Joint resummation in electroweak boson production, Phys. Rev. D 66 (2002) 014011 [hep-ph/0202251] [SPIRES].ADSGoogle Scholar
  27. [27]
    F. Landry, R. Brock, P.M. Nadolsky and C.P. Yuan, Tevatron Run-1 Z boson data and Collins-Soper-Sterman resummation formalism, Phys. Rev. D 67 (2003) 073016 [hep-ph/0212159] [SPIRES].ADSGoogle Scholar
  28. [28]
    S. Berge, P.M. Nadolsky and F.I. Olness, Heavy-flavor effects in soft gluon resummation for electroweak boson production at hadron colliders, Phys. Rev. D 73 (2006) 013002 [hep-ph/0509023] [SPIRES].ADSGoogle Scholar
  29. [29]
    G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Transverse-momentum resummation: a perturbative study of Z production at the Tevatron, Nucl. Phys. B 815 (2009) 174 [arXiv:0812.2862] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    V.A. Zykunov, Electroweak corrections to the observables of W-boson production at RHIC, Eur. Phys. J. direct C 3 (2001) 9 [hep-ph/0107059] [SPIRES].Google Scholar
  31. [31]
    S. Dittmaier and M. Krämer, Electroweak radiative corrections to W-boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [SPIRES].ADSGoogle Scholar
  32. [32]
    U. Baur and D. Wackeroth, Electroweak radiative corrections to \( {{{pp}} \left/ {{p\bar{p}}} \right.} \to {W^\pm } \to {l^\pm }\nu \) beyond the pole approximation, Phys. Rev. D 70 (2004) 073015 [hep-ph/0405191] [SPIRES].ADSGoogle Scholar
  33. [33]
    A. Arbuzov et al., One-loop corrections to the Drell-Yan process in SANC. I: The charged current case, Eur. Phys. J. C 46 (2006) 407 [Erratum ibid C 50 (2007) 505] [hep-ph/0506110] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the charged current Drell-Yan process, JHEP 12 (2006) 016 [hep-ph/0609170] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    U. Baur, S. Keller and W.K. Sakumoto, QED radiative corrections to Z boson production and the forward backward asymmetry at hadron colliders, Phys. Rev. D 57 (1998) 199 [hep-ph/9707301] [SPIRES].ADSGoogle Scholar
  36. [36]
    U. Baur, O. Brein, W. Hollik, C. Schappacher and D. Wackeroth, Electroweak radiative corrections to neutral current Drell-Yan processes at hadron colliders, Phys. Rev. D 65 (2002) 033007 [hep-ph/0108274] [SPIRES].ADSGoogle Scholar
  37. [37]
    V.A. Zykunov, Weak radiative corrections to the Drell-Yan process for large invariant mass of a dilepton pair, Phys. Rev. D 75 (2007) 073019 [hep-ph/0509315] [SPIRES].ADSGoogle Scholar
  38. [38]
    A. Arbuzov et al., One-loop corrections to the Drell–Yan process in SANC. (II). The Neutral current case, Eur. Phys. J. C 54 (2008) 451 [arXiv:0711.0625] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders, JHEP 10 (2007) 109 [arXiv:0710.1722] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    S. Dittmaier and M. Huber, Radiative corrections to the neutral-current Drell-Yan process in the Standard Model and its minimal supersymmetric extension, JHEP 01 (2010) 060 [arXiv:0911.2329] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    C.M. Carloni Calame, G. Montagna, O. Nicrosini and M. Treccani, Higher-order QED corrections to W-boson mass determination at hadron colliders, Phys. Rev. D 69 (2004) 037301 [hep-ph/0303102] [SPIRES].ADSGoogle Scholar
  42. [42]
    W. Placzek and S. Jadach, Multiphoton radiation in leptonic W-boson decays, Eur. Phys. J. C 29 (2003) 325 [hep-ph/0302065] [SPIRES].ADSGoogle Scholar
  43. [43]
    C.M. CarloniCalame, S. Jadach, G. Montagna, O. Nicrosini and W. Placzek, Comparisons of the Monte Carlo programs HORACE and WINHAC for single W-boson production at hadron colliders, Acta Phys. Polon. B 35 (2004) 1643 [hep-ph/0402235] [SPIRES].ADSGoogle Scholar
  44. [44]
    S. Brensing, S. Dittmaier, M. Krämer and A. Mück, Radiative corrections to W-boson hadroproduction: Higher-order electroweak and supersymmetric effects, Phys. Rev. D 77 (2008) 073006 [arXiv:0710.3309] [SPIRES].ADSGoogle Scholar
  45. [45]
    S. Dittmaier and M. Krämer, in Les Houches physics at TeV colliders 2005, standard model and Higgs working group: Summary report, C. Buttar et al.eds., hep-ph/0604120 [SPIRES].
  46. [46]
    A.B. Arbuzov and R.R. Sadykov, Inverse bremsstrahlung contributions to Drell-Yan like processes, J. Exp. Theor. Phys. 106 (2008) 488 [arXiv:0707.0423] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    Q.-H. Cao and C.P. Yuan, Combined effect of QCD resummation and QED radiative correction to W boson observables at the Tevatron, Phys. Rev. Lett. 93 (2004) 042001 [hep-ph/0401026] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    B.F.L. Ward, C. Glosser, S. Jadach and S.A. Yost, Threshold corrections in precision LHC physics: QED × QCD, Int. J. Mod. Phys. A 20 (2005) 3735 [hep-ph/0411047] [SPIRES].ADSGoogle Scholar
  49. [49]
    B.F.L. Ward and S.A. Yost, QED × QCD Resummation and Shower/ME Matching for LHC Physics, Acta Phys. Polon. B 38 (2007) 2395 [arXiv:0704.0294] [SPIRES].ADSGoogle Scholar
  50. [50]
    A. Vicini et al., Drell-Yan processes at the LHC, PoS(RAD COR 2007)013.
  51. [51]
    G. Balossini et al., Drell-Yan processes at hadron colliders, Nuovo Cim. B 123 (2008) 741 [SPIRES].ADSGoogle Scholar
  52. [52]
    A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak precision for W + jet production, PoS(RADCOR2009)058 [arXiv:1001.2468] [SPIRES].
  53. [53]
    W.T. Giele, E.W.N. Glover and D.A. Kosower, Higher order corrections to jet cross-sections in hadron colliders, Nucl. Phys. B 403 (1993) 633 [hep-ph/9302225] [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2jet and Z + 2jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [SPIRES].ADSGoogle Scholar
  55. [55]
    J.J. vander Bij and E.W.N. Glover, Z Boson Production And Decay Via Gluons, Nucl. Phys. B 313 (1989) 237 [SPIRES].ADSGoogle Scholar
  56. [56]
    C.F. Berger et al., Precise Predictions for W + 4 Jet Production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    C.F. Berger et al., Next-to-Leading Order QCD Predictions for Z,γ + 3-Jet Distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [SPIRES].ADSGoogle Scholar
  58. [58]
    C.F. Berger et al., Next-to-Leading Order QCD Predictions for W + 3-Jet Distributions at Hadron Colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [SPIRES].ADSGoogle Scholar
  59. [59]
    R.K. Ellis, W.T. Giele, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop amplitudes for W + 3jet production in hadron collisions, JHEP 01 (2009) 012 [arXiv:0810.2762] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [SPIRES].ADSCrossRefGoogle Scholar
  61. [61]
    M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, Electroweak corrections to large transverse momentum production of W bosons at the LHC, Phys. Lett. B 651 (2007) 160 [hep-ph/0703283] [SPIRES].ADSGoogle Scholar
  63. [63]
    J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, Electroweak corrections to hadronic production of W bosons at large transverse momenta, Nucl. Phys. B 797 (2008) 27 [arXiv:0708.0476] [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    W. Hollik, T. Kasprzik and B.A. Kniehl, Electroweak corrections to W-boson hadroproduction at finite transverse momentum, Nucl. Phys. B 790 (2008) 138 [arXiv:0707.2553] [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to W + jet hadroproduction including leptonic W-boson decays, JHEP 08 (2009) 075 [arXiv:0906.1656] [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, Logarithmic electroweak corrections to hadronic Z + 1 jet production at large transverse momentum, Phys. Lett. B 609 (2005) 277 [hep-ph/0408308] [SPIRES].ADSGoogle Scholar
  67. [67]
    J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, One-loop weak corrections to hadronic production of Z bosons at large transverse momenta, Nucl. Phys. B 727 (2005) 368 [hep-ph/0507178] [SPIRES].ADSCrossRefGoogle Scholar
  68. [68]
    P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B 446 (1999) 278 [hep-ph/9809321] [SPIRES].ADSGoogle Scholar
  69. [69]
    V.S. Fadin, L.N. Lipatov, A.D. Martin and M. Melles, Resummation of double logarithms in electroweak high energy processes, Phys. Rev. D 61 (2000) 094002 [hep-ph/9910338] [SPIRES].ADSGoogle Scholar
  70. [70]
    A. Denner and S. Pozzorini, One-loop leading logarithms in electroweak radiative corrections. I: Results, Eur. Phys. J. C 18 (2001) 461 [hep-ph/0010201] [SPIRES].ADSCrossRefGoogle Scholar
  71. [71]
    W. Beenakker and A. Werthenbach, Electroweak two-loop Sudakov logarithms for on-shell fermions and bosons, Nucl. Phys. B 630 (2002) 3 [hep-ph/0112030] [SPIRES].ADSCrossRefGoogle Scholar
  72. [72]
    A. Denner, M. Melles and S. Pozzorini, Two-loop electroweak angular-dependent logarithms at high energies, Nucl. Phys. B 662 (2003) 299 [hep-ph/0301241] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e  → 4fermions + gamma, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [SPIRES].ADSCrossRefGoogle Scholar
  74. [74]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e  → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [hep-ph/0505042] [SPIRES].ADSCrossRefGoogle Scholar
  75. [75]
    ALEPH collaboration, D. Buskulic et al., First measurement of the quark to photon fragmentation function, Z. Phys. C 69 (1996) 365 [SPIRES].Google Scholar
  76. [76]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [SPIRES].ADSCrossRefGoogle Scholar
  77. [77]
    J. Küblbeck, M. Böhm and A. Denner, Feyn Arts: Computer Algebraic Generation Of Feynman Graphs And Amplitudes, Comput. Phys. Commun. 60 (1990) 165 [SPIRES].ADSCrossRefGoogle Scholar
  78. [78]
    H. Eck and J. Küblbeck, Guide to FeynArts 1.0, University of Würzburg, Würzburg Germany (1992).Google Scholar
  79. [79]
    G.P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput. Phys. 27 (1978) 192 [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  80. [80]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  81. [81]
    T. Hahn and C. Schappacher, The implementation of the minimal supersymmetric standard model in FeynArts and FormCalc, Comput. Phys. Commun. 143 (2002) 54 [hep-ph/0105349] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  82. [82]
    T. Hahn and M. Pérez-Victoria, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [SPIRES].ADSCrossRefGoogle Scholar
  83. [83]
    S. Dittmaier, Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles, Phys. Rev. D 59 (1999) 016007 [hep-ph/9805445] [SPIRES].ADSGoogle Scholar
  84. [84]
    E. Accomando, A. Denner and C. Meier, Electroweak corrections to Wγ and Zγ production at the LHC, Eur. Phys. J. C 47 (2006) 125 [hep-ph/0509234] [SPIRES].ADSCrossRefGoogle Scholar
  85. [85]
    S. Dittmaier and M. Roth, LUSIFER: A LUcid approach to SIx FERmion production, Nucl. Phys. B 642 (2002) 307 [hep-ph/0206070] [SPIRES].CrossRefGoogle Scholar
  86. [86]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  87. [87]
    A. Denner and S. Dittmaier, The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [SPIRES].ADSCrossRefGoogle Scholar
  88. [88]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortschr. Phys. 41 (1993) 307 [arXiv:0709.1075] [SPIRES].Google Scholar
  89. [89]
    A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  90. [90]
    G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  91. [91]
    W. Beenakker and A. Denner, Infrared Divergent Scalar Box Integrals With Applications In The Electroweak Standard Model, Nucl. Phys. B 338 (1990) 349 [SPIRES].ADSCrossRefGoogle Scholar
  92. [92]
    A. Denner, U. Nierste and R. Scharf, A Compact expression for the scalar one loop four point function, Nucl. Phys. B 367 (1991) 637 [SPIRES].ADSCrossRefGoogle Scholar
  93. [93]
    S. Dittmaier, Separation of soft and collinear singularities from one-loop N-point integrals, Nucl. Phys. B 675 (2003) 447 [hep-ph/0308246] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  94. [94]
    D.B. Melrose, Reduction of Feynman diagrams, Nuovo Cim. 40 (1965) 181 [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  95. [95]
    A. Denner and S. Dittmaier, Reduction of one-loop tensor 5-point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  96. [96]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [SPIRES].ADSCrossRefGoogle Scholar
  97. [97]
    G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [SPIRES].ADSCrossRefGoogle Scholar
  98. [98]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP 08 (2008) 108 [arXiv:0807.1248] [SPIRES].ADSCrossRefGoogle Scholar
  99. [99]
    S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [SPIRES].ADSCrossRefGoogle Scholar
  100. [100]
    S. Dittmaier, A. Kabelschacht and T. Kasprzik, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys. B 800 (2008) 146 [arXiv:0802.1405] [SPIRES].ADSCrossRefGoogle Scholar
  101. [101]
    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  102. [102]
    T. D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev. B 133 (1964) 1549. MathSciNetADSCrossRefGoogle Scholar
  103. [103]
    A. Denner, S. Dittmaier, T. Gehrmann and C. Kurz, Electroweak corrections to hadronic event shapes and jet production in e + e annihilation, Nucl. Phys. B 836 (2010) 37 [arXiv:1003.0986] [SPIRES].ADSCrossRefGoogle Scholar
  104. [104]
    E.W.N. Glover and A.G. Morgan, Measuring the photon fragmentation function at LEP, Z. Phys. C 62 (1994) 311 [SPIRES].ADSGoogle Scholar
  105. [105]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, arXiv:1105.0020 [SPIRES].
  106. [106]
    D. De Florian and A. Signer, W gamma and Z gamma production at hadron colliders, Eur. Phys. J. C 16 (2000) 105 [hep-ph/0002138] [SPIRES].ADSGoogle Scholar
  107. [107]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid B 510 (1998) 503] [hep-ph/9605323] [SPIRES].ADSCrossRefGoogle Scholar
  108. [108]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  109. [109]
    D.Y. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy dependent width effects in e + e annihilation near the Z pole, Phys. Lett. B 206 (1988) 539 [SPIRES].ADSGoogle Scholar
  110. [110]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].ADSCrossRefGoogle Scholar
  111. [111]
    M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches Accord PDFs (LHAPDF) and Lhaglue, in HERA and the LHC, A. de Roeck and H. Jung eds., Geneva Switzerland (2005) [hep-ph/0508110] [SPIRES].
  112. [112]
    C.W. Bauer and B.O. Lange, Scale setting and resummation of logarithms in pp → V + jets, arXiv:0905.4739 [SPIRES].
  113. [113]
    G.C. Blazey et al., Run II jet physics, in QCD and Weak Boson Physics in Run II, U. Baur, R.K. Ellis and D. Zeppenfeld eds., Batavia U.S.A. (1999), pg.47 [hep-ex/0005012] [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Ansgar Denner
    • 1
  • Stefan Dittmaier
    • 2
  • Tobias Kasprzik
    • 3
    Email author
  • Alexander Mück
    • 4
  1. 1.Institut für Theoretische Physik und AstrophysikUniversität WürzburgWürzburgGermany
  2. 2.Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  3. 3.Institut für Theoretische TeilchenphysikKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  4. 4.Institut für Theoretische Teilchenphysik und KosmologieRWTH Aachen UniversityAachenGermany

Personalised recommendations