Skip to main content
Log in

The virtue of defects in 4D gauge theories and 2D CFTs

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We advance a correspondence between the topological defect operators in Liouville and Toda conformal field theories — which we construct — and loop operators and domain wall operators in four dimensional \( \mathcal{N} = 2 \) supersymmetric gauge theories on S 4. Our computation of the correlation functions in Liouville/Toda theory in the presence of topological defect operators, which are supported on curves on the Riemann surface, yields the exact answer for the partition function of four dimensional gauge theories in the presence of various walls and loop operators; results which we can quantitatively substantiate with an independent gauge theory analysis. As an interesting outcome of this work for two dimensional conformal field theories, we prove that topological defect operators and the Verlinde loop operators are different descriptions of the same operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Further Reading

  1. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES].

  3. L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N =2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. E.P. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B 300 (1988) 360 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. V.B. Petkova and J.B. Zuber, Generalised twisted partition functions, Phys. Lett. B 504 (2001) 157 [hep-th/0011021] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. V.B. Petkova, On the crossing relation in the presence of defects, JHEP 04 (2010) 061 [arXiv:0912.5535] [SPIRES].

    Article  ADS  Google Scholar 

  8. G.W. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys. 123 (1989) 177 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. V.B. Petkova and J.B. Zuber, The many faces of Ocneanu cells, Nucl. Phys. B 603 (2001) 449 [hep-th/0101151] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Fuchs, I. Runkel and C. Schweigert, TFT construction of RCFT correlators. I: partition functions, Nucl. Phys. B 646 (2002) 353 [hep-th/0204148] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. C. Bachas and M. Gaberdiel, Loop operators and the Kondo problem, JHEP 11 (2004) 065 [hep-th/0411067] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. C. Bachas, J. de Boer, R. Dijkgraaf and H. Ooguri, Permeable conformal walls and holography, JHEP 06 (2002) 027 [hep-th/0111210] [SPIRES].

    Article  ADS  Google Scholar 

  13. T. Quella and V. Schomerus, Symmetry breaking boundary states and defect lines, JHEP 06 (2002) 028 [hep-th/0203161] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. K. Graham and G.M.T. Watts, Defect lines and boundary flows, JHEP 04 (2004) 019 [hep-th/0306167] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Kramers-Wannier duality from conformal defects, Phys. Rev. Lett. 93 (2004) 070601 [cond-mat/0404051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Duality and defects in rational conformal field theory, Nucl. Phys. B 763 (2007) 354 [hep-th/0607247] [SPIRES].

    Article  ADS  Google Scholar 

  17. T. Quella, I. Runkel and G.M.T. Watts, Reflection and transmission for conformal defects, JHEP 04 (2007) 095 [hep-th/0611296] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. I. Runkel, Perturbed defects and T -systems in conformal field theory, J. Phys. A 41 (2008) 105401 [arXiv:0711. 0102] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. C. Bachas and I. Brunner, Fusion of conformal interfaces, JHEP 02 (2008) 085 [arXiv:0712.0076] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. G.W. Moore and N. Seiberg, Lectures on RCFT, talk given at Trieste Spring School 1989, April 2–14, Trieste, Italy (1989).

  21. D. Friedan and S.H. Shenker, The analytic geometry of two-dimensional conformal field theory, Nucl. Phys. B 281 (1987) 509 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. R.E. Behrend, P.A. Pearce, V.B. Petkova and J.-B. Zuber, Boundary conditions in rational conformal field theories, Nucl. Phys. B 570 (2000) 525 [hep-th/9908036] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. G. Felder, J. Fröhlich, J. Fuchs and C. Schweigert, Conformal boundary conditions and three-dimensional topological field theory, Phys. Rev. Lett. 84 (2000) 1659 [hep-th/9909140] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. J.-F. Wu and Y. Zhou, From Liouville to chern-simons, alternative realization of Wilson loop operators in AGT duality, arXiv:0911.1922 [SPIRES].

  26. V. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, Boundary Liouville field theory. I: boundary state and boundary two-point function, hep-th/0001012 [SPIRES].

  27. J. Teschner, Remarks on Liouville theory with boundary, hep-th/0009138 [SPIRES].

  28. A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0101152 [SPIRES].

  29. G. Sarkissian, Defects and permutation branes in the Liouville field theory, Nucl. Phys. B 821 (2009) 607 [arXiv:0903.4422] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. D. Gaiotto, N =2 dualities, arXiv:0904.2715 [SPIRES].

  32. N. Drukker, D.R. Morrison and T. Okuda, Loop operators and S-duality from curves on Riemann surfaces, JHEP 09 (2009) 031 [arXiv:0907.2593] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Gomis, T. Okuda and D. Trancanelli, Quantum ’t Hooft operators and S-duality in N =4 super Yang-Mills, Adv. Theor. Math. Phys. 13 (2009) 1941 [arXiv:0904.4486] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  34. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].

    MathSciNet  Google Scholar 

  35. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [SPIRES].

  36. D. Bak, M. Gutperle and S. Hirano, A dilatonic deformation of AdS 5 and its field theory dual, JHEP 05 (2003) 072 [hep-th/0304129] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. A.B. Clark, D.Z. Freedman, A. Karch and M. Schnabl, The dual of Janus ((<:) ↔ (:>)) an interface CFT, Phys. Rev. D 71 (2005) 066003 [hep-th/0407073] [SPIRES].

    ADS  Google Scholar 

  38. D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N =4 super Yang-Mills theory, arXiv:0804.2902 [SPIRES].

  39. B. Ponsot and J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, hep-th/9911110 [SPIRES].

  40. A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. D. Gaiotto and E. Witten, S-duality of boundary conditions in N =4 super Yang-Mills theory, arXiv:0807.3720 [SPIRES].

  42. D. Gaiotto and J. Maldacena, The gravity duals of N =2 superconformal field theories, arXiv:0904.4466 [SPIRES].

  43. N. Wyllard, A N−1 conformal Toda field theory correlation functions from conformal N =2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. S. Kanno, Y. Matsuo, S. Shiba and Y. Tachikawa, N =2 gauge theories and degenerate fields of Toda theory, Phys. Rev. D 81 (2010) 046004 [arXiv:0911.4787] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. S. Gukov and E. Witten, Gauge theory, ramification and the geometric Langlands program, hep-th/0612073 [SPIRES].

  46. J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories with interacting boundaries or defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. E. D’Hoker, J. Estes and M. Gutperle, Interface Yang-Mills, supersymmetry and Janus, Nucl. Phys. B 753 (2006) 16 [hep-th/0603013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Gomis.

Additional information

ArXiv ePrint:1003.1112

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drukker, N., Gaiotto, D. & Gomis, J. The virtue of defects in 4D gauge theories and 2D CFTs. J. High Energ. Phys. 2011, 25 (2011). https://doi.org/10.1007/JHEP06(2011)025

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)025

Keywords

Navigation