Composite Higgs boson pair production at the LHC

  • R. Gröber
  • M. MühlleitnerEmail author


The measurement of the trilinear and quartic Higgs self-couplings is necessary for the reconstruction of the Higgs potential. This way the Higgs mechanism as the origin of electroweak symmetry breaking can be tested. The couplings are accessible in multi-Higgs production processes at the LHC. In this paper we investigate the prospects of measuring the trilinear Higgs coupling in composite Higgs models. In these models, the Higgs boson emerges as a pseudo-Goldstone boson of a strongly interacting sector, and the Higgs potential is generated by loops of the Standard Model (SM) gauge bosons and fermions. The Higgs self-couplings are modified compared to the SM and controlled by the compositeness parameter ξ in addition to the Higgs boson mass. We construct areas of sensitivity to the trilinear Higgs coupling in the relevant parameter space for various final states.


Higgs Physics Beyond Standard Model Technicolor and Composite Models 


  1. [1]
    J. Goldstone, A. Salam and S. Weinberg, Broken symmetries, Phys. Rev. 127 (1962) 965 [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [2]
    S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264 [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    S.L. Glashow and S. Weinberg, Breaking chiral symmetry, Phys. Rev. Lett. 20 (1968) 224 [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    A. Salam, Weak and electromagnetic interactions, in the proceedings of the Nobel Symposium, Stockholm, Sweden (1968).Google Scholar
  5. [5]
    P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [SPIRES].ADSGoogle Scholar
  6. [6]
    P.W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    J.F.Gunion,H.E.Haber,G.Kaneand S.Dawson, T he Higgs hunter’s guide, Addison-Wesley, U.S.A. (1990).Google Scholar
  11. [11]
    M. Gomez-Bock et al., Rompimiento de la simetria electrodebil y la fisica del Higgs: conceptos basicos, J. Phys. Conf. Ser. 18 (2005) 74 [hep-ph/0509077] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    M. Gomez-Bock, M. Mondragon, M. Muhlleitner, M. Spira and P.M. Zerwas, Concepts of electroweak symmetry breaking and Higgs physics, arXiv:0712.2419 [SPIRES].
  13. [13]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    R. Contino, TASI 2009 lectures: the Higgs as a composite Nambu-Goldstone boson, arXiv:1005.4269 [SPIRES].
  15. [15]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].ADSGoogle Scholar
  18. [18]
    S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982) 206 [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [SPIRES].ADSGoogle Scholar
  20. [20]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].ADSGoogle Scholar
  21. [21]
    H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [SPIRES].ADSGoogle Scholar
  22. [22]
    H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [SPIRES].ADSGoogle Scholar
  23. [23]
    M.J. Dugan, H. Georgi and D. B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    A. Falkowski, Pseudo-Goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [SPIRES].ADSGoogle Scholar
  25. [25]
    J.R. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    F. Sannino, Conformal dynamics for TeV physics and cosmology, Acta Phys. Polon. B 40 (2009) 3533 [arXiv:0911.0931] [SPIRES].Google Scholar
  28. [28]
    A. Djouadi and G. Moreau, Higgs production at the LHC in warped extra-dimensional models, Phys. Lett. B 660 (2008) 67 [arXiv:0707.3800] [SPIRES].ADSGoogle Scholar
  29. [29]
    G. Bhattacharyya and T.S. Ray, Probing warped extra dimension via gg → h and h → γγ at LHC, Phys. Lett. B 675 (2009) 222 [arXiv:0902.1893] [SPIRES].ADSGoogle Scholar
  30. [30]
    A. Azatov, M. Toharia and L. Zhu, Higgs production from gluon fusion in warped extra dimensions, Phys. Rev. D 82 (2010) 056004 [arXiv:1006.5939] [SPIRES].ADSGoogle Scholar
  31. [31]
    I. Low and A. Vichi, On the production of a composite Higgs boson, arXiv:1010.2753 [SPIRES].
  32. [32]
    E. Accomando, The process gg → WW as a probe into the EWSB mechanism, Phys. Lett. B 661 (2008) 129 [arXiv:0709.1364] [SPIRES].ADSGoogle Scholar
  33. [33]
    A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Production of neutral Higgs-boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, The reconstruction of trilinear Higgs couplings, hep-ph/0001169 [SPIRES].
  35. [35]
    M.M. Muhlleitner, Higgs particles in the standard model and supersymmetric theories, hep-ph/0008127 [SPIRES].
  36. [36]
    M.M. Muhlleitner, Testing Higgs self-couplings at high-energy linear colliders, hep-ph/0101262 [SPIRES]
  37. [37]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs-boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [SPIRES].ADSGoogle Scholar
  38. [38]
    F. Gianotti et al., Physics potential and experimental challenges of the LHC luminosity upgrade, Eur. Phys. J. C 39 (2005) 293 [hep-ph/0204087] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    A. Blondel, A. Clark and F. Mazzucato, Studies on the measurement of the SM Higgs self-couplings, ATL-PHYS-2002-029 (2009).Google Scholar
  40. [40]
    Higgs Working Group collaboration, K.A. Assamagan et al., T he Higgs working group: summary report 2003, hep-ph/0406152 [SPIRES].
  41. [41]
    U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett. 89 (2002) 151801 [hep-ph/0206024] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    U. Baur, T. Plehn and D.L. Rainwater, Determining the Higgs boson selfcoupling at hadron colliders, Phys. Rev. D 67 (2003) 033003 [hep-ph/0211224] [SPIRES].ADSGoogle Scholar
  43. [43]
    U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: A comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [SPIRES].ADSGoogle Scholar
  44. [44]
    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [SPIRES].ADSGoogle Scholar
  45. [45]
    V. Barger, T. Han, P. Langacker, B. McElrath and P. Zerwas, Effects of genuine dimension-six Higgs operators, Phys. Rev. D 67 (2003) 115001 [hep-ph/0301097] [SPIRES].ADSGoogle Scholar
  46. [46]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].ADSGoogle Scholar
  49. [49]
    J.J. van der Bij, Limits on a strongly interacting Higgs sector, arXiv:1004.1713 [SPIRES].
  50. [50]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].ADSGoogle Scholar
  51. [51]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].ADSGoogle Scholar
  52. [52]
    K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    V. D. Barger, T. Han and R. J. N. Phillips, Double Higgs boson bremsstrahlung from W and Z bosons at supercolliders, Phys. Rev. D 38 (1988) 2766 [SPIRES].ADSGoogle Scholar
  54. [54]
    A. Dobrovolskaya and V. Novikov, On heavy Higgs boson production, Z. Phys. C 52 (1991) 427 [SPIRES].ADSGoogle Scholar
  55. [55]
    D. A. Dicus, K. J. Kallianpur and S. S. D. Willenbrock, Higgs boson pair production in the effective W approximation, Phys. Lett. B 200 (1988) 187 [SPIRES].ADSGoogle Scholar
  56. [56]
    A. Abbasabadi, W.W. Repko, D.A. Dicus and R. Vega, Comparison of exact and effective gauge boson calculations for gauge boson fusion processes, Phys. Rev. D 38 (1988) 2770 [SPIRES].ADSGoogle Scholar
  57. [57]
    A. Abbasabadi, W.W. Repko, D.A. Dicus and R. Vega, Single and double Higgs production by gauge boson fusion, Phys. Lett. B 213 (1988) 386 [SPIRES].ADSGoogle Scholar
  58. [58]
    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Testing Higgs self-couplings at e + e linear colliders, Eur. Phys. J. C 10 (1999) 27 [hep-ph/9903229] [SPIRES].ADSGoogle Scholar
  60. [60]
    T. Plehn, M. Spira and P. M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [SPIRES].ADSCrossRefGoogle Scholar
  61. [61]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, SUSY Higgs production at proton colliders, Phys. Lett. B 318 (1993) 347 [SPIRES].ADSGoogle Scholar
  64. [64]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [SPIRES].ADSGoogle Scholar
  68. [68]
    R.P. Kauffman and W. Schaffer, QCD corrections to production of Higgs pseudoscalars, Phys. Rev. D 49 (1994) 551 [hep-ph/9305279] [SPIRES].ADSGoogle Scholar
  69. [69]
    S. Dawson and R. Kauffman, QCD corrections to Higgs boson production: nonleading terms in the heavy quark limit, Phys. Rev. D 49 (1994) 2298 [hep-ph/9310281] [SPIRES].ADSGoogle Scholar
  70. [70]
    M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [SPIRES].ADSCrossRefGoogle Scholar
  71. [71]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  72. [72]
    T. Han, G. Valencia and S. Willenbrock, Structure function approach to vector boson scattering in pp collisions, Phys. Rev. Lett. 69 (1992) 3274 [hep-ph/9206246] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    T. Han and S. Willenbrock, QCD correction to the ppW H and Z H total cross-sections, Phys. Lett. B 273 (1991) 167 [SPIRES].ADSGoogle Scholar
  74. [74]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  75. [75]
    J.M. Butterworth et al., The tools and Monte Carlo working group summary report, arXiv:1003.1643 [SPIRES].
  76. [76]
    A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [SPIRES].ADSGoogle Scholar
  77. [77]
    S. Bock et al., Measuring hidden Higgs and strongly-interacting Higgs scenarios, Phys. Lett. B 694 (2010) 44 [arXiv:1007.2645] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations