Exploring the CP-violating Inert-Doublet Model

  • B. Grzadkowski
  • O. M. Ogreid
  • P. Osland
  • A. Pukhov
  • M. Purmohammadi
Open Access
Article

Abstract

We have explored properties of an extension of the Inert Doublet Model by the addition of an extra non-inert scalardoublet. The model offers a possibility of CP violation in the scalar sector and a candidate for the Dark Matter. Allowed regions in the plane spanned by the mass of the Dark-Matter particle and the lightest neutral Higgs particle have been identified, and constraints from direct-detection experiments have been studied. For favorable parameter regions one may observe long-lived charged particles produced at the LHC.

Keywords

Higgs Physics Beyond Standard Model 

References

  1. [1]
    N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574 [SPIRES].ADSGoogle Scholar
  2. [2]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [SPIRES].ADSGoogle Scholar
  3. [3]
    Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the Dark Scalar Doublet and its Impact on the Standard-Model Higgs Boson at Colliders, Phys. Rev. D 76 (2007) 095011 [arXiv:0708.2939] [SPIRES].ADSGoogle Scholar
  4. [4]
    E. Lundstrom, M. Gustafsson and J. Edsjo, The Inert Doublet Model and LEP II Limits, Phys. Rev. D 79 (2009) 035013 [arXiv:0810.3924] [SPIRES].ADSGoogle Scholar
  5. [5]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The inert doublet model: An archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [SPIRES].ADSGoogle Scholar
  6. [6]
    T. Hambye, F.S. Ling, L. Lopez Honorez and J. Rocher, Scalar Multiplet Dark Matter, JHEP 07 (2009) 090 [arXiv:0903.4010] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    B. Grzadkowski, O.M. Ogreid and P. Osland, Natural Multi-Higgs Model with Dark Matter and CP-violation, Phys. Rev. D 80 (2009) 055013 [arXiv:0904.2173] [SPIRES].ADSGoogle Scholar
  8. [8]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    S. Weinberg, Gauge Theory of CP-violation, Phys. Rev. Lett. 37 (1976) 657 [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    G.C. Branco, Spontaneous CP Nonconservation And Natural Flavor Conservation: A Minimal Model, Phys. Rev. D 22 (1980) 2901 [SPIRES].ADSGoogle Scholar
  11. [11]
    S. Andreas, T. Hambye and M.H.G. Tytgat, WIMP dark matter, Higgs exchange and DAMA, JCAP 10 (2008) 034 [arXiv:0808.0255] [SPIRES].ADSGoogle Scholar
  12. [12]
    T. Hambye and M.H.G. Tytgat, Electroweak Symmetry Breaking induced by Dark Matter, Phys. Lett. B 659 (2008) 651 [arXiv:0707.0633] [SPIRES].ADSGoogle Scholar
  13. [13]
    E. Accomando et al., Workshop on CP Studies and Non-Standard Higgs Physics, hep-ph/0608079 [SPIRES].
  14. [14]
    W. Khater and P. Osland, CP violation in top quark production at the LHC and two-Higgs-doublet models, Nucl. Phys. B 661 (2003) 209 [hep-ph/0302004] [SPIRES].ADSGoogle Scholar
  15. [15]
    P.M. Ferreira, R. Santos and A. Barroso, Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation, Phys. Lett. B 603 (2004) 219 [Erratum ibid B 629 (2005) 114] [hep-ph/0406231] [SPIRES].ADSGoogle Scholar
  16. [16]
    A. Barroso, P.M. Ferreira and R. Santos, Charge and CP symmetry breaking in two Higgs doublet models, Phys. Lett. B 632 (2006) 684 [hep-ph/0507224] [SPIRES].ADSGoogle Scholar
  17. [17]
    A. Barroso, P.M. Ferreira and R. Santos, Neutral minima in two-Higgs doublet models, Phys. Lett. B 652 (2007) 181 [hep-ph/0702098] [SPIRES].ADSGoogle Scholar
  18. [18]
    S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [SPIRES].ADSGoogle Scholar
  19. [19]
    A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree-level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [SPIRES].ADSGoogle Scholar
  20. [20]
    A. Arhrib, Unitarity constraints on scalar parameters of the standard and two Higgs doublets model, hep-ph/0012353 [SPIRES].
  21. [21]
    I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the 2HDM with CP-violation, hep-ph/0312374 [SPIRES].
  22. [22]
    I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [SPIRES].ADSGoogle Scholar
  23. [23]
    A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the Two-Higgs-Doublet-Model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [SPIRES].ADSGoogle Scholar
  24. [24]
    A.W. El Kaffas, O.M. Ogreid and P. Osland, Profile of Two-Higgs-Doublet-Model Parameter Space, in the proceedings of 2007 International Linear Collider Workshop (LCWS07 and ILC07), Hamburg Germany, 30 May–3 Jun 2007 arXiv:0709.4203 [SPIRES].
  25. [25]
    A.W. El Kaffas, W. Khater, O.M. Ogreid and P. Osland, Consistency of the Two Higgs Doublet Model and CP-violation in top production at the LHC, Nucl. Phys. B 775 (2007) 45 [hep-ph/0605142] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    K.G. Chetyrkin, M. Misiak and M. Münz, Weak radiative B-meson decay beyond leading logarithms, Phys. Lett. B 400 (1997) 206 [Erratum ibid B 425 (1998) 414] [hep-ph/9612313] [SPIRES].ADSGoogle Scholar
  27. [27]
    A.J. Buras, A. Kwiatkowski and N. Pott, Scale uncertainties in the B → X s γ decay, Phys. Lett. B 414 (1997) 157 [Erratum ibid B 434 (1998) 459] [hep-ph/9707482] [SPIRES].ADSGoogle Scholar
  28. [28]
    C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and m(t)-dependence of BR[B → X s+ ], Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    P. Gambino and M. Misiak, Quark mass effects in B → X s γ, Nucl. Phys. B 611 (2001) 338 [hep-ph/0104034] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    A.J. Buras, A. Czarnecki, M. Misiak and J. Urban, Completing the NLO QCD calculation of \( \bar{B} \to {X_s}\gamma \), Nucl. Phys. B 631 (2002) 219 [hep-ph/0203135] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    F. Borzumati and C. Greub, 2HDMs predictions for \( \bar{B} \to {X_s}\gamma \) in NLO QCD, Phys. Rev. D 58 (1998) 074004 [hep-ph/9802391] [SPIRES].ADSGoogle Scholar
  32. [32]
    M. Misiak and M. Steinhauser, Three-loop matching of the dipole operators for b → sγ and b → sg, Nucl. Phys. B 683 (2004) 277 [hep-ph/0401041] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    K. Melnikov and A. Mitov, The photon energy spectrum in B → X s + γ in perturbative QCD through O(α s 2 ), Phys. Lett. B 620 (2005) 69 [hep-ph/0505097] [SPIRES].ADSGoogle Scholar
  34. [34]
    M. Misiak et al., The first estimate of \( B\left( {\bar{B} \to {X_s}\gamma } \right) \) at O(α s 2 ), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    M. Misiak and M. Steinhauser, NNLO QCD corrections to the B → X s γ matrix elements using interpolation in m c, Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    M. Czakon, U. Haisch and M. Misiak, Four-loop anomalous dimensions for radiative flavour-changing decays, JHEP 03 (2007) 008 [hep-ph/0612329] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    C.W. Bauer, Corrections to moments of the photon spectrum in the inclusive decay B → X s γ, Phys. Rev. D 57 (1998) 5611 [Erratum ibid D 60 (1999) 099907] [hep-ph/9710513] [SPIRES].ADSGoogle Scholar
  38. [38]
    M. Neubert, Renormalization-group improved calculation of the B → X s + γ branching ratio, Eur. Phys. J. C 40 (2005) 165 [hep-ph/0408179] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    L.F. Abbott, P. Sikivie and M.B. Wise, Constraints on Charged Higgs Couplings, Phys. Rev. D 21 (1980) 1393 [SPIRES].ADSGoogle Scholar
  40. [40]
    G.G. Athanasiu, P.J. Franzini and F.J. Gilman, Restrictions on Two Higgs Models from Heavy Quark Systems, Phys. Rev. D 32 (1985) 3010 [SPIRES].ADSGoogle Scholar
  41. [41]
    S.L. Glashow and E.E. Jenkins, A Light Top Quark after All?, Phys. Lett. B 196 (1987) 233 [SPIRES].ADSGoogle Scholar
  42. [42]
    C.Q. Geng and J.N. Ng, Charged Higgs Effect In \( B_d^0 - \bar{B}_d^0 \) Mixing, K → π Neutrino Anti-Neutrino Decay And Rare Decays Of B Mesons, Phys. Rev. D 38 (1988) 2857 [Erratum ibid D 41 (1990) 1715] [SPIRES].ADSGoogle Scholar
  43. [43]
    T. Inami and C.S. Lim, Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes \( {K_L} \to \mu \bar{\mu } \) , \( {K^{+} } \to {\pi^{+} }\nu \bar{\nu } \) and \( {K^0} \leftrightarrow {\bar{K}^0} \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid 65 (1981) 1772] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    J. Urban, F. Krauss, U. Jentschura and G. Soff, Next-to-leading order QCD corrections for the \( {B^0} - {\bar{B}^0} \) mixing with an extended Higgs sector, Nucl. Phys. B 523 (1998) 40 [hep-ph/9710245] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    P. Krawczyk and S. Pokorski, Strongly Coupled Charged Scalar in B and t Decays, Phys. Rev. Lett. 60 (1988) 182 [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    OPAL collaboration, G. Abbiendi et al., Measurement of the branching ratio for the process b → tau- anti-nu/tau X, Phys. Lett. B 520 (2001) 1 [hep-ex/0108031] [SPIRES].ADSGoogle Scholar
  47. [47]
    Belle collaboration, K. Ikado et al., Evidence of the purely leptonic decay B- → tau- anti-nu/tau, Phys. Rev. Lett. 97 (2006) 251802 [hep-ex/0604018] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    T.E. Browder, Two topics in rare B decays, Nucl. Phys. Proc. Suppl. 163 (2007) 117 [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    BABAR collaboration, B. Aubert et al., A Search for B+-tau + nu Recoiling Against B- → D0 l- anti-nu(l)X, hep-ex/0608019 [SPIRES].
  50. [50]
    W.-S. Hou, Enhanced charged Higgs boson effects in B- → tau anti-neutrino, mu anti-neutrino and b → tau anti-neutrino + X, Phys. Rev. D 48 (1993) 2342 [SPIRES].ADSGoogle Scholar
  51. [51]
    Y. Grossman and Z. Ligeti, The Inclusive \( \bar{B} \to \tau \bar{\nu }X \) Decay in Two Higgs Doublet Models, Phys. Lett. B 332 (1994) 373 [hep-ph/9403376] [SPIRES].ADSGoogle Scholar
  52. [52]
    Y. Grossman, H.E. Haber and Y. Nir, QCD corrections to charged Higgs-mediated b → cτν decay, Phys. Lett. B 357 (1995) 630 [hep-ph/9507213] [SPIRES].ADSGoogle Scholar
  53. [53]
    BABAR collaboration, B. Aubert et al., Observation of the semileptonic decays B - D* tau- anti-nu(tau) and evidence for B - → D tau-anti-nu(tau), Phys. Rev. Lett. 100 (2008) 021801 [arXiv:0709.1698] [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    U. Nierste, S. Trine and S. Westhoff, Charged-Higgs effects in a new B → D tau nu differential decay distribution, Phys. Rev. D 78 (2008) 015006 [arXiv:0801.4938] [SPIRES].ADSGoogle Scholar
  55. [55]
    U. Nierste, S. Trine and S. Westhoff, private communication.Google Scholar
  56. [56]
    DELPHI collaboration, J. Abdallah et al., Searches for neutral Higgs bosons in extended models, Eur. Phys. J. C 38 (2004) 1 [hep-ex/0410017] [SPIRES].ADSGoogle Scholar
  57. [57]
    A. Denner, R.J. Guth, W. Hollik and J.H. Kuhn, The Z width in the two Higgs doublet model, Z. Phys. C 51 (1991) 695 [SPIRES].ADSGoogle Scholar
  58. [58]
    K. Cheung and O.C.W. Kong, Can the two-Higgs-doublet model survive the constraint from the muon anomalous magnetic moment as suggested?, Phys. Rev. D 68 (2003) 053003 [hep-ph/0302111] [SPIRES].ADSGoogle Scholar
  59. [59]
    D. Chang, W.-F. Chang, C.-H. Chou and W.-Y. Keung, Large two-loop contributions to g-2 from a generic pseudoscalar boson, Phys. Rev. D 63 (2001) 091301 [hep-ph/0009292] [SPIRES].ADSGoogle Scholar
  60. [60]
    W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, A precision constraint on multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [arXiv:0711.4022] [SPIRES].ADSGoogle Scholar
  61. [61]
    W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  63. [63]
    B.C. Regan, E.D. Commins, C.J. Schmidt and D. DeMille, New limit on the electron electric dipole moment, Phys. Rev. Lett. 88 (2002) 071805 [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    A. Pilaftsis, Higgs-mediated electric dipole moments in the MSSM: An application to baryogenesis and Higgs searches, Nucl. Phys. B 644 (2002) 263 [hep-ph/0207277] [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid 65 (1990) 2920] [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    Muon g-2 collaboration, G.W. Bennett et al., Measurement of the negative muon anomalous magnetic moment to 0.7-ppm, Phys. Rev. Lett. 92 (2004) 161802 [hep-ex/0401008] [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    T. Hahn and M. Pérez-Victoria, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [SPIRES].ADSCrossRefGoogle Scholar
  68. [68]
  69. [69]
    G.J. van Oldenborgh and J.A.M. Vermaseren, New Algorithms for One Loop Integrals, Z. Phys. C 46 (1990) 425 [SPIRES].Google Scholar
  70. [70]
    WMAP collaboration, G. Hinshaw et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results, Astrophys. J. Suppl. 180 (2009) 225 [arXiv:0803.0732] [SPIRES].ADSCrossRefGoogle Scholar
  71. [71]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs2.0: A program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [SPIRES].ADSMATHCrossRefGoogle Scholar
  72. [72]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [SPIRES].ADSMATHCrossRefGoogle Scholar
  73. [73]
    A. Pierce and J. Thaler, Natural dark matter from an unnatural Higgs boson and new colored particles at the TeV scale, JHEP 08 (2007) 026 [hep-ph/0703056] [SPIRES].ADSCrossRefGoogle Scholar
  74. [74]
    E.M. Dolle and S. Su, The Inert Dark Matter, Phys. Rev. D 80 (2009) 055012 [arXiv:0906.1609] [SPIRES].ADSGoogle Scholar
  75. [75]
    L. Lopez Honorez and C.E. Yaguna, A new viable region of the inert doublet model, JCAP 01 (2011) 002 [arXiv:1011.1411] [SPIRES].ADSGoogle Scholar
  76. [76]
    L. Lopez Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP 09 (2010) 046 [arXiv:1003.3125] [SPIRES].ADSCrossRefGoogle Scholar
  77. [77]
    L. Lavoura and J.P. Silva, Fundamental CP-violating quantities in a SU(2) × U(1) model with many Higgs doublets, Phys. Rev. D 50 (1994) 4619 [hep-ph/9404276] [SPIRES].ADSGoogle Scholar
  78. [78]
    F.J. Botella and J.P. Silva, Jarlskog-like invariants for theories with scalars and fermions, Phys. Rev. D 51 (1995) 3870 [hep-ph/9411288] [SPIRES].ADSGoogle Scholar
  79. [79]
    G.C. Branco, L. Lavoura and J.P. Silva, CP violation, Int. Ser. Monogr. Phys. 103 (1999) 1 [SPIRES].Google Scholar
  80. [80]
    S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D 72 (2005) 035004 [Erratum ibid D 72 (2005) 099902] [hep-ph/0504050] [SPIRES].ADSGoogle Scholar
  81. [81]
    J.F. Gunion and H.E. Haber, Conditions for CP-violation in the general two-Higgs-doublet model, Phys. Rev. D 72 (2005) 095002 [hep-ph/0506227] [SPIRES].ADSGoogle Scholar
  82. [82]
    G.C. Branco, M.N. Rebelo and J.I. Silva-Marcos, CP-odd invariants in models with several Higgs doublets, Phys. Lett. B 614 (2005) 187 [hep-ph/0502118] [SPIRES].ADSGoogle Scholar
  83. [83]
    A.W. El Kaffas, P. Osland and O.M. Ogreid, CP violation, stability and unitarity of the two Higgs doublet model, Nonlin. Phenom. Complex Syst. 10 (2007) 347 [hep-ph/0702097] [SPIRES].Google Scholar
  84. [84]
    The CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].ADSCrossRefGoogle Scholar
  85. [85]
    XENON100 collaboration, E. Aprile et al., First Dark Matter Results from the XENON100 Experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].ADSCrossRefGoogle Scholar
  86. [86]
    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs 2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [SPIRES].ADSMATHCrossRefGoogle Scholar
  87. [87]
    K. Huitu, K. Kannike, A. Racioppi and M. Raidal, Long-lived charged Higgs at LHC as a probe of scalar Dark Matter, JHEP 01 (2011) 010 [arXiv:1005.4409] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • B. Grzadkowski
    • 1
  • O. M. Ogreid
    • 2
  • P. Osland
    • 3
  • A. Pukhov
    • 4
  • M. Purmohammadi
    • 3
  1. 1.Institute of Theoretical Physics, Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.Bergen University CollegeBergenNorway
  3. 3.Department of PhysicsUniversity of BergenBergenNorway
  4. 4.Skobeltsyn Inst. of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations