Advertisement

Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks

  • ETM collaboration
  • R. Baron
  • Ph. Boucaud
  • J. Carbonell
  • A. Deuzeman
  • V. Drach
  • F. Farchioni
  • V. Gimenez
  • G. Herdoiza
  • K. Jansen
  • C. McNeile
  • C. Michael
  • I. Montvay
  • D. Palao
  • E. Pallante
  • O. Pène
  • S. Reker
  • C. Urbach
  • M. Wagner
  • U. Wenger
Open Access
Article

Abstract

We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N f = 2 + 1 + 1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a ≈ 0:078 fm and a ≈ 0:086 fm with lattice sizes ranging from L ≈ 1:9 fm to L ≈ 2:8 fm. We measure with high statistical precision the light pseudoscalar mass m PS and decay constant f PS in a range 270 ≲ m PS ≲ 510 MeV and determine the low energy parameters f 0 and \( {\bar{l}_{3,4}} \) of SU(2) chiral perturbation theory. We use the two values of the lattice spacing, several lattice sizes as well as different values of the light, strange and charm quark masses to explore the systematic effects. A first study of discretisation effects in light-quark observables and a comparison to N f = 2 results are performed.

Keywords

Lattice QCD Chiral Lagrangians 

References

  1. [1]
    K. Jansen, Lattice QCD: a critical status report, PoS(LATTICE 2008)010 [arXiv:0810.5634] [SPIRES].
  2. [2]
    E.E. Scholz, Light hadron masses and decay constants, arXiv:0911.2191 [SPIRES].
  3. [3]
    Alpha collaboration, R. Frezzotti, P.A. Grassi, S. Sint and P. Weisz, Lattice QCD with a chirally twisted mass term, JHEP 08 (2001) 058 [hep-lat/0101001] [SPIRES].Google Scholar
  4. [4]
    R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. \( I:\mathcal{O}(a) \) improvement, JHEP 08 (2004) 007 [hep-lat/0306014] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks, Phys. Lett. B 650 (2007) 304 [hep-lat/0701012] [SPIRES].ADSGoogle Scholar
  6. [6]
    ETM collaboration, B. Blossier et al., Light quark masses and pseudoscalar decay constants from N f = 2 Lattice QCD with twisted mass fermions, JHEP 04 (2008) 020 [arXiv:0709.4574] [SPIRES].Google Scholar
  7. [7]
    ETM collaboration, C. Urbach, Lattice QCD with two light Wilson quarks and maximally twisted mass, PoS(LATTICE 2007)022 [arXiv:0710.1517] [SPIRES].
  8. [8]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks: simulation and analysis details, Comput. Phys. Commun. 179 (2008) 695 [arXiv:0803.0224] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    K. Cichy, J. Gonzalez Lopez, K. Jansen, A. Kujawa and A. Shindler, Twisted mass, overlap and Creutz fermions: cut-off effects at tree-level of perturbation theory, Nucl. Phys. B 800 (2008) 94 [arXiv:0802.3637] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    ETM collaboration, C. Alexandrou et al., Light baryon masses with dynamical twisted mass fermions, Phys. Rev. D 78 (2008) 014509 [arXiv:0803.3190] [SPIRES].ADSGoogle Scholar
  11. [11]
    ETM collaboration, K. Jansen, C. Michael, A. Shindler and M. Wagner, The static-light meson spectrum from twisted mass lattice QCD, JHEP 12 (2008) 058 [arXiv:0810.1843] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    ETM collaboration, K. Jansen, C. Michael and C. Urbach, The η 0 meson from lattice QCD, Eur. Phys. J. C 58 (2008) 261 [arXiv:0804.3871] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    R. Frezzotti, V. Lubicz and S. Simula, Electromagnetic form factor of the pion from twisted-mass lattice QCD at N f = 2, Phys. Rev. D 79 (2009) 074506 [arXiv:0812.4042] [SPIRES].ADSGoogle Scholar
  14. [14]
    ETM collaboration, B. Blossier et al., Pseudoscalar decay constants of kaon and D-mesons from N f = 2 twisted mass lattice QCD, JHEP 07 (2009) 043 [arXiv:0904.0954] [SPIRES].Google Scholar
  15. [15]
    ETM collaboration, K. Jansen, C. McNeile, C. Michael and C. Urbach, Meson masses and decay constants from unquenched lattice QCD, Phys. Rev. D 80 (2009) 054510 [arXiv:0906.4720] [SPIRES].ADSGoogle Scholar
  16. [16]
    ETM collaboration, C. McNeile, C. Michael and C. Urbach, The ω-ρ meson mass splitting and mixing from lattice QCD, Phys. Lett. B 674 (2009) 286 [arXiv:0902.3897] [SPIRES].ADSGoogle Scholar
  17. [17]
    ETM collaboration, R. Baron et al., Light meson physics from maximally twisted mass lattice QCD, arXiv:0911.5061 [SPIRES].
  18. [18]
    ETM collaboration, C. Alexandrou et al., The low-lying baryon spectrum with two dynamical twisted mass fermions, Phys. Rev. D 80 (2009) 114503 [arXiv:0910.2419] [SPIRES].ADSGoogle Scholar
  19. [19]
    ETM collaboration, B. Blossier et al., A proposal for B-physics on current lattices, JHEP 04 (2010) 049 [arXiv:0909.3187] [SPIRES].CrossRefGoogle Scholar
  20. [20]
    ETM collaboration, B. Blossier, M. Wagner and O. Pene, Lattice calculation of the Isgur-Wise functions τ 1/2 and τ 3/2 with dynamical quarks, JHEP 06 (2009) 022 [arXiv:0903.2298] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    ETM collaboration, M. Constantinou et al., Non-perturbative renormalization of quark bilinear operators with N f = 2 (tmQCD) Wilson fermions and the tree- level improved gauge action, arXiv:1004.1115 [SPIRES].
  22. [22]
    ETM collaboration, C. Michael, A. Shindler and M. Wagner, The continuum limit of the static-light meson spectrum, arXiv:1004.4235 [SPIRES].
  23. [23]
    A. Shindler, Twisted mass lattice QCD, Phys. Rept. 461 (2008) 37 [arXiv:0707.4093] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    XLF collaboration, K. Jansen, A. Shindler, C. Urbach and I. Wetzorke, Scaling test for Wilson twisted mass QCD, Phys. Lett. B 586 (2004) 432 [hep-lat/0312013] [SPIRES].ADSGoogle Scholar
  25. [25]
    XLF collaboration, K. Jansen, M. Papinutto, A. Shindler, C. Urbach and I. Wetzorke, Light quarks with twisted mass fermions, Phys. Lett. B 619 (2005) 184 [hep-lat/0503031] [SPIRES].ADSGoogle Scholar
  26. [26]
    XLF collaboration, K. Jansen, M. Papinutto, A. Shindler, C. Urbach and I. Wetzorke, Quenched scaling of Wilson twisted mass fermions, JHEP 09 (2005) 071 [hep-lat/0507010] [SPIRES].Google Scholar
  27. [27]
    A.M. Abdel-Rehim, R. Lewis and R.M. Woloshyn, Spectrum of quenched twisted mass lattice QCD at maximal twist, Phys. Rev. D 71 (2005) 094505 [hep-lat/0503007] [SPIRES].ADSGoogle Scholar
  28. [28]
    ETM collaboration, P. Dimopoulos, R. Frezzotti, G. Herdoiza, C. Urbach and U. Wenger, Scaling and low energy constants in lattice QCD with N f = 2 maximally twisted Wilson quarks, PoS(LATTICE 2007)102 [arXiv:0710.2498] [SPIRES].
  29. [29]
    R. Frezzotti, G. Martinelli, M. Papinutto and G.C. Rossi, Reducing cutoff effects in maximally twisted lattice QCD close to the chiral limit, JHEP 04 (2006) 038 [hep-lat/0503034] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    XLF collaboration, K. Jansen et al., Flavour breaking effects of Wilson twisted mass fermions, Phys. Lett. B 624 (2005) 334 [hep-lat/0507032] [SPIRES].ADSGoogle Scholar
  31. [31]
    R. Frezzotti and G. Rossi, \( \mathcal{O}\left( {{a^2}} \right) \) cutoff effects in Wilson fermion simulations, PoS(LATTICE 2007)277 [arXiv:0710.2492] [SPIRES].
  32. [32]
    ETM collaboration, P. Dimopoulos, R. Frezzotti, C. Michael, G.C. Rossi and C. Urbach, \( \mathcal{O}\left( {{a^2}} \right) \) cutoff effects in lattice Wilson fermion simulations, Phys. Rev. D 81 (2010) 034509 [arXiv:0908.0451] [SPIRES].ADSGoogle Scholar
  33. [33]
    R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. II: four-quark operators, JHEP 10 (2004) 070 [hep-lat/0407002] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    R. Frezzotti and G.C. Rossi, Twisted-mass lattice QCD with mass non-degenerate quarks, Nucl. Phys. (Proc. Suppl.) 128 (2004) 193 [hep-lat/0311008] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    T. Chiarappa et al., Numerical simulation of QCD with u, d, s and c quarks in the twisted-mass Wilson formulation, Eur. Phys. J. C 50 (2007) 373 [hep-lat/0606011] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    ETM collaboration, R. Baron et al., Status of ETMC simulations with N f = 2 + 1 + 1 twisted mass fermions, PoS(LATTICE 2008)094 [arXiv:0810.3807] [SPIRES].
  37. [37]
    ETM collaboration, R. Baron et al., First results of ETMC simulations with N f = 2 + 1 + 1 maximally twisted mass fermions, PoS(LAT2009)104 [arXiv:0911.5244] [SPIRES].
  38. [38]
    MILC collaboration, A. Bazavov et al., HISQ action in dynamical simulations, PoS(LATTICE 2008)033 [arXiv:0903.0874] [SPIRES].
  39. [39]
    MILC collaboration, A. Bazavov et al., Progress on four flavor QCD with the HISQ action, PoS(LAT2009)123 [arXiv:0911.0869] [SPIRES].
  40. [40]
    MILC collaboration, A. Bazavov et al., Scaling studies of QCD with the dynamical HISQ action, arXiv:1004.0342 [SPIRES].
  41. [41]
    L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio and N. Tantalo, QCD with light Wilson quarks on fine lattices (I): first experiences and physics results, JHEP 02 (2007) 056 [hep-lat/0610059] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    RBC-UKQCD collaboration, C. Allton et al., Physical results from 2 + 1 flavor domain wall QCD and SU(2) chiral perturbation theory, Phys. Rev. D 78 (2008) 114509 [arXiv:0804.0473] [SPIRES].ADSGoogle Scholar
  43. [43]
    JLQCD collaboration, S. Aoki et al., Two-flavor QCD simulation with exact chiral symmetry, Phys. Rev. D 78 (2008) 014508 [arXiv:0803.3197] [SPIRES].ADSGoogle Scholar
  44. [44]
    JLQCD and TWQCD collaborations, J. Noaki et al., Convergence of the chiral expansion in two-flavor lattice QCD, Phys. Rev. Lett. 101 (2008) 202004 [arXiv:0806.0894] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    S. Dürr et al., Ab-initio determination of light hadron masses, Science 322 (2008) 1224 [arXiv:0906.3599] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    PACS-CS collaboration, S. Aoki et al., Physical point simulation in 2 + 1 flavor lattice QCD, Phys. Rev. D 81 (2010) 074503 [arXiv:0911.2561] [SPIRES].ADSGoogle Scholar
  47. [47]
    PACS-CS collaboration, K.I. Ishikawa et al., SU(2) and SU(3) chiral perturbation theory analyses on baryon masses in 2 + 1 flavor lattice QCD, Phys. Rev. D 80 (2009) 054502 [arXiv:0905.0962] [SPIRES].ADSGoogle Scholar
  48. [48]
    A. Bazavov et al., Full nonperturbative QCD simulations with 2 + 1 flavors of improved staggered quarks, arXiv:0903.3598 [SPIRES].
  49. [49]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  50. [50]
    Y. Iwasaki, Renormalization group analysis of lattice theories and improved lattice action: two-dimensional nonlinear O(N) σ-model, Nucl. Phys. B 258 (1985) 141 [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    Y. Iwasaki, K. Kanaya, T. Kaneko and T. Yoshie, Scaling in SU(3) pure gauge theory with a renormalization group improved action, Phys. Rev. D 56 (1997) 151 [hep-lat/9610023] [SPIRES].ADSGoogle Scholar
  52. [52]
    G. Münster and C. Schmidt, Chiral perturbation theory for lattice QCD with a twisted mass term, Europhys. Lett. 66 (2004) 652 [hep-lat/0311032] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    S.R. Sharpe and J.M.S. Wu, Twisted mass chiral perturbation theory at next-to-leading order, Phys. Rev. D 71 (2005) 074501 [hep-lat/0411021] [SPIRES].ADSGoogle Scholar
  54. [54]
    S. Aoki and O. Bär, Twisted-mass QCD, \( \mathcal{O}(a) \) improvement and Wilson chiral perturbation theory, Phys. Rev. D 70 (2004) 116011 [hep-lat/0409006] [SPIRES].ADSGoogle Scholar
  55. [55]
    S.R. Sharpe and J.M.S. Wu, The phase diagram of twisted mass lattice QCD, Phys. Rev. D 70 (2004) 094029 [hep-lat/0407025] [SPIRES].ADSGoogle Scholar
  56. [56]
    G. Münster, On the phase structure of twisted mass lattice QCD, JHEP 09 (2004) 035 [hep-lat/0407006] [SPIRES].CrossRefGoogle Scholar
  57. [57]
    G. Münster, C. Schmidt and E.E. Scholz, Chiral perturbation theory for twisted mass QCD, Nucl. Phys. (Proc. Suppl.) 140 (2005) 320 [hep-lat/0409066] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    L. Scorzato, Pion mass splitting and phase structure in twisted mass QCD, Eur. Phys. J. C 37 (2004) 445 [hep-lat/0407023] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    F. Farchioni et al., Twisted mass quarks and the phase structure of lattice QCD, Eur. Phys. J. C 39 (2005) 421 [hep-lat/0406039] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    F. Farchioni et al., Exploring the phase structure of lattice QCD with twisted mass quarks, Nucl. Phys. (Proc. Suppl.) 140 (2005) 240 [hep-lat/0409098] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    F. Farchioni et al., The phase structure of lattice QCD with Wilson quarks and renormalization group improved gluons, Eur. Phys. J. C 42 (2005) 73 [hep-lat/0410031] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    F. Farchioni et al., Dynamical twisted mass fermions, PoS(LAT2005)072 [hep-lat/0509131] [SPIRES].
  63. [63]
    F. Farchioni et al., Numerical simulations with two flavours of twisted-mass Wilson quarks and DBW2 gauge action, Eur. Phys. J. C 47 (2006) 453 [hep-lat/0512017] [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    F. Farchioni et al., Lattice spacing dependence of the first order phase transition for dynamical twisted mass fermions, Phys. Lett. B 624 (2005) 324 [hep-lat/0506025] [SPIRES].ADSGoogle Scholar
  65. [65]
    P. Weisz, Continuum limit improved lattice action for pure Yang-Mills theory. 1, Nucl. Phys. B 212 (1983) 1 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  66. [66]
    P. Weisz and R. Wohlert, Continuum limit improved lattice action for pure Yang-Mills theory. 2, Nucl. Phys. B 236 (1984) 397 [Erratum ibid. B 247 (1984) 544] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  67. [67]
    C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [SPIRES].ADSGoogle Scholar
  68. [68]
    K. Jansen et al., Stout smearing for twisted mass fermions, PoS(LATTICE 2007)036 [arXiv:0709.4434] [SPIRES].
  69. [69]
    C. Urbach, K. Jansen, A. Shindler and U. Wenger, HMC algorithm with multiple time scale integration and mass preconditioning, Comput. Phys. Commun. 174 (2006) 87 [hep-lat/0506011] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    R. Frezzotti and K. Jansen, A polynomial hybrid Monte Carlo algorithm, Phys. Lett. B 402 (1997) 328 [hep-lat/9702016] [SPIRES].ADSGoogle Scholar
  71. [71]
    R. Frezzotti and K. Jansen, The PHMC algorithm for simulations of dynamical fermions. I: description and properties, Nucl. Phys. B 555 (1999) 395 [hep-lat/9808011] [SPIRES].CrossRefADSGoogle Scholar
  72. [72]
    T. Chiarappa, R. Frezzotti and C. Urbach, A (P)HMC algorithm for N f = 2 + 1 + 1 flavours of twisted mass fermions, PoS(LAT2005)103 [hep-lat/0509154] [SPIRES].
  73. [73]
    K. Jansen and C. Urbach, tmLQCD: a program suite to simulate Wilson twisted mass lattice QCD, Comput. Phys. Commun. 180 (2009) 2717 [arXiv:0905.3331] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  74. [74]
    ETM collaboration, R. Baron et al., Computing K and D meson masses with N f = 2 + 1 + 1 twisted mass lattice QCD, arXiv:1005.2042 [SPIRES].
  75. [75]
    R. Sommer, A new way to set the energy scale in lattice gauge theories and its applications to the static force and α s in SU(2) Yang-Mills theory, Nucl. Phys. B 411 (1994) 839 [hep-lat/9310022] [SPIRES].CrossRefADSGoogle Scholar
  76. [76]
    I. Montvay and E. Scholz, Updating algorithms with multi-step stochastic correction, Phys. Lett. B 623 (2005) 73 [hep-lat/0506006] [SPIRES].ADSGoogle Scholar
  77. [77]
    G. Colangelo, U. Wenger and J.M.S. Wu, Twisted mass finite volume effects, arXiv:1003.0847 [SPIRES].
  78. [78]
    J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett. B 184 (1987) 83 [SPIRES].ADSGoogle Scholar
  79. [79]
    G. Colangelo, S. Dürr and C. Haefeli, Finite volume effects for meson masses and decay constants, Nucl. Phys. B 721 (2005) 136 [hep-lat/0503014] [SPIRES].CrossRefADSGoogle Scholar
  80. [80]
    S. Necco, Chiral low-energy constants from lattice QCD, PoS(CONFINEMENT8)024 [arXiv:0901.4257] [SPIRES].

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • ETM collaboration
  • R. Baron
    • 1
  • Ph. Boucaud
    • 2
  • J. Carbonell
    • 3
  • A. Deuzeman
    • 4
  • V. Drach
    • 3
  • F. Farchioni
    • 5
  • V. Gimenez
    • 6
  • G. Herdoiza
    • 7
  • K. Jansen
    • 7
  • C. McNeile
    • 8
  • C. Michael
    • 9
  • I. Montvay
    • 10
  • D. Palao
    • 11
  • E. Pallante
    • 4
  • O. Pène
    • 2
  • S. Reker
    • 4
  • C. Urbach
    • 12
  • M. Wagner
    • 13
  • U. Wenger
    • 14
  1. 1.CEA, Centre de SaclayIRFU/Service de Physique NucléaireGif-sur-YvetteFrance
  2. 2.Laboratoire de Physique Théorique (Bât. 210)CNRS et Université Paris-Sud 11Orsay-CedexFrance
  3. 3.Laboratoire de Physique Subatomique et CosmologieGrenobleFrance
  4. 4.Centre for Theoretical PhysicsUniversity of GroningenGroningenthe Netherlands
  5. 5.Institut für Theoretische PhysikUniversität MünsterMünsterGermany
  6. 6.Dep. de Física Teòrica and IFIC, Universitat de València-CSICBurjassotSpain
  7. 7.NIC, DESYZeuthenGermany
  8. 8.Department of Physics and Astronomy, The Kelvin BuildingUniversity of GlasgowGlasgowU.K.
  9. 9.Division of Theoretical PhysicsUniversity of LiverpoolLiverpoolU.K.
  10. 10.DESYNotkestr. 85HamburgGermany
  11. 11.INFN, Sez. di Roma “Tor Vergata”RomeItaly
  12. 12.Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  13. 13.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  14. 14.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland

Personalised recommendations