The non-compact elliptic genus: mock or modular

Open Access


We analyze various perspectives on the elliptic genus of non-compact supersymmetric coset conformal field theories with central charge larger than three. We calculate the holomorphic part of the elliptic genus via a free field description of the model, and show that it agrees with algebraic expectations. The holomorphic part of the elliptic genus is directly related to an Appell-Lerch sum and behaves anomalously under modular transformations. We analyze the origin of the anomaly by calculating the elliptic genus through a path integral in a coset conformal field theory. The path integral codes both the holomorphic part of the elliptic genus, and a non-holomorphic remainder that finds its origin in the continuous spectrum of the non-compact model. The remainder term can be shown to agree with a function that mathematicians introduced to parameterize the difference between mock theta functions and Jacobi forms. The holomorphic part of the elliptic genus thus has a path integral completion which renders it non-holomorphic and modular.


Conformal Field Models in String Theory Extended Supersymmetry Conformal and W Symmetry 


  1. [1]
    A.N. Schellekens and N.P. Warner, Anomalies and modular invariance in string theory, Phys. Lett. B 177 (1986) 317 [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    A.N. Schellekens and N.P. Warner, Anomaly cancellation and selfdual lattices, Phys. Lett. B 181 (1986) 339 [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    A.N. Schellekens and N.P. Warner, Anomalies, Characters and Strings, Nucl. Phys. B 287 (1987) 317 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    E. Witten, Elliptic genera and quantum field theory, Commun. Math. Phys. 109 (1987) 525 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  5. [5]
    E.J. Martinec, Algebraic Geometry and Effective Lagrangians, Phys. Lett. B 217 (1989) 431 [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    C. Vafa and N.P. Warner, Catastrophes and the Classification of Conformal Theories, Phys. Lett. B 218 (1989) 51 [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    P. Di Vecchia, J.L. Petersen and H.B. Zheng, N=2 Extended Superconformal Theories in Two-Dimensions, Phys. Lett. B 162 (1985) 327 [SPIRES].ADSGoogle Scholar
  8. [8]
    P. Di Vecchia, J.L. Petersen and M. Yu, On the Unitary Representations of N = 2 Superconformal Theory, Phys. Lett. B 172 (1986) 211 [SPIRES].ADSGoogle Scholar
  9. [9]
    P. Di Vecchia, J.L. Petersen, M. Yu and H.B. Zheng, Explicit Construction of Unitary Representations of the N = 2 Superconformal Algebra, Phys. Lett. B 174 (1986) 280 [SPIRES].ADSGoogle Scholar
  10. [10]
    W. Boucher, D. Friedan and A. Kent, Determinant Formulae and Unitarity for the N = 2 Superconformal Algebras in Two-Dimensions or Exact Results on String Compactification, Phys. Lett. B 172 (1986) 316 [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    V.K. Dobrev, Characters of the unitarizable highest weight modules over the N = 2 superconformal algebras, Phys. Lett. B 186 (1987) 43 [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    A. Cappelli, C. Itzykson and J.B. Zuber, The ADE Classification of Minimal and A1(1) Conformal Invariant Theories, Commun. Math. Phys. 113 (1987) 1 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  13. [13]
    D. Gepner and Z.-a. Qiu, Modular Invariant Partition Functions for Parafermionic Field Theories, Nucl. Phys. B 285 (1987) 423 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    P. Di Francesco and S. Yankielowicz, Ramond sector characters and N = 2 Landau-Ginzburg models, Nucl. Phys. B 409 (1993) 186 [hep-th/9305037] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    M. Henningson, N = 2 gauged WZW models and the elliptic genus, Nucl. Phys. B 413 (1994) 73 [hep-th/9307040] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    A. Hanany, N. Prezas and J. Troost, The partition function of the two-dimensional black hole conformal field theory, JHEP 04 (2002) 014 [hep-th/0202129] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    T. Eguchi and Y. Sugawara, SL(2,R)/U(1) supercoset and elliptic genera of non-compact Calabi-Yau manifolds, JHEP 05 (2004) 014 [hep-th/0403193] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    D. Israel, C. Kounnas, A. Pakman and J. Troost, The partition function of the supersymmetric two-dimensional black hole and little string theory, JHEP 06 (2004) 033 [hep-th/0403237] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    T. Eguchi and Y. Sugawara, Conifold type singularities, N = 2 Liouville and SL(2,R)/U(1) theories, JHEP 01 (2005) 027 [hep-th/0411041] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    S. Zwegers, Mock Theta functions, PhD thesis, Utrecht University (2002).Google Scholar
  22. [22]
    S. Zwegers, Appell-Lerch sums as mock modular forms at KIAS, June 26, 2008, quoted as obtained with D. Zagier, downloaded on 29/03/2010 from the URL∼zwegers/presentations/002.pdf.
  23. [23]
    T. Eguchi and K. Hikami, Superconformal Algebras and Mock Theta Functions, J. Phys. A 42 (2009) 304010 [arXiv:0812.1151] [SPIRES].MathSciNetGoogle Scholar
  24. [24]
    K. Miki, The representation theory of the SO(3) invariant superconformal algebra, Int. J. Mod. Phys. A 5 (1990) 1293 [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    T. Eguchi and Y. Sugawara, Modular bootstrap for boundary N = 2 Liouville theory, JHEP 01 (2004) 025 [hep-th/0311141] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    D. Israel, A. Pakman and J. Troost, Extended SL(2,R)/U(1) characters, or modular properties of a simple non-rational conformal field theory, JHEP 04 (2004) 043 [hep-th/0402085] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    R. Benichou and J. Troost, Bound states in N = 2 Liouville theory with boundary and Deep throat D-branes, JHEP 07 (2008) 125 [arXiv:0805.4766] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    A.M. Semikhatov, A. Taormina and I.Y. Tipunin, Higher Level Appell Functions, Modular Transformations and Characters, math/0311314.
  29. [29]
    D. Zagier, Ramanujan’s mock theta functions and their applications d’après Zwegers and Bringmann-Ono, Séminaire Bourbaki 986 (2007).Google Scholar
  30. [30]
    T. Eguchi and K. Hikami, N = 2 Superconformal Algebra and the Entropy of Calabi-Yau Manifolds, Lett. Math. Phys. 92 (2010) 269 [arXiv:1003.1555] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, arXiv:0807.4723 [SPIRES].
  32. [32]
    J. Manschot, Stability and duality in N = 2 supergravity, arXiv:0906.1767 [SPIRES].
  33. [33]
    E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992) [SPIRES].Google Scholar
  35. [35]
    K. Hori and A. Kapustin, Duality of the fermionic 2D black hole and N = 2 Liouville theory as mirror symmetry, JHEP 08 (2001) 045 [hep-th/0104202] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998) [SPIRES].Google Scholar
  37. [37]
    S. Murthy, Notes on non-critical superstrings in various dimensions, JHEP 11 (2003) 056 [hep-th/0305197] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    T. Eguchi and A. Taormina, Unitary representations of N = 4 superconformal algebra, Phys. Lett. B 196 (1987) 75 [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    A. Giveon and D. Kutasov, Little string theory in a double scaling limit, JHEP 10 (1999) 034 [hep-th/9909110] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and SL(2,R) WZW model. I, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  41. [41]
    T. Kawai, Y. Yamada and S.-K. Yang, Elliptic genera and N = 2 superconformal field theory, Nucl. Phys. B 414 (1994) 191 [hep-th/9306096] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    K. Gawędzki, Noncompact WZW conformal field theories, hep-th/9110076 [SPIRES].
  43. [43]
    K. Sfetsos, Degeneracy of string states in 2 − D black hole and a new derivation of SU(1, 1) parafermion characters, Phys. Lett. B 271 (1991) 301 [SPIRES].MathSciNetADSGoogle Scholar
  44. [44]
    I. Bakas and E. Kiritsis, Beyond the large-N limit: Nonlinear W(infinity) as symmetry of the SL(2,R)/U(1) coset model, Int. J. Mod. Phys. A 7S1A (1992) 55 [Int. J. Mod. Phys. A 7 (1992) 55] [hep-th/9109029] [SPIRES].MathSciNetGoogle Scholar
  45. [45]
    P.A. Griffin and O.F. Hernandez, Feigin-Fuchs derivation of SU(1,1) parafermion characters, Nucl. Phys. B 356 (1991) 287 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    A. Pakman, BRST quantization of string theory in AdS 3, JHEP 06 (2003) 053 [hep-th/0304230] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique,1 Ecole Normale SupérieureParis Cedex 05France

Personalised recommendations