Integrated dipoles with MadDipole in the MadGraph framework

Article

Abstract

Heading towards a full automation of next-to-leading order (NLO) QCD corrections, one important ingredient is the analytical integration over the one-particle phase space of the unresolved particle that is necessary when adding the subtraction terms to the virtual corrections. We present the implementation of these integrated dipoles in the MadGraph framework. The result is a package that allows an automated calculation for the NLO real emission parts of an arbitrary process.

Keywords

NLO Computations QCD Hadronic Colliders 

References

  1. [1]
    T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    CompHEP collaboration, E. Boos et al., CompHEP 4.4: automatic computations from Lagrangians to events, Nucl. Instrum. Meth. A 534 (2004) 250 [hep-ph/0403113] [SPIRES].ADSGoogle Scholar
  5. [5]
    A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].
  6. [6]
    T. Gleisberg et al., SHERPA 1.α, a proof-of-concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, arXiv:0708.4233 [SPIRES].
  9. [9]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun. 180 (2009) 1941 [arXiv:0710.2427] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [SPIRES].ADSGoogle Scholar
  12. [12]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W+ 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [SPIRES].ADSGoogle Scholar
  13. [13]
    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [SPIRES].ADSGoogle Scholar
  14. [14]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production, JHEP 08 (2003) 007 [hep-ph/0305252] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in MC@NLO, JHEP 03 (2006) 092 [hep-ph/0512250] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    P. Torrielli and S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO, JHEP 04 (2010) 110 [1002.4293] [SPIRES].CrossRefGoogle Scholar
  18. [18]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    O. Latunde-Dada, S. Gieseke and B. Webber, A positive-weight next-to-leading-order Monte Carlo for e + e annihilation to hadrons, JHEP 02 (2007) 051 [hep-ph/0612281] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation of Drell-Yan vector boson production, JHEP 10 (2008) 015 [arXiv:0806.0290] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [1002.2581] [SPIRES].CrossRefGoogle Scholar
  25. [25]
    D.B. Melrose, Reduction of Feynman diagrams, Nuovo Cim. 40 (1965) 181 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  26. [26]
    G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ+μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    C.F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].ADSGoogle Scholar
  31. [31]
    W.T. Giele and G. Zanderighi, On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP 06 (2008) 038 [arXiv:0805.2152] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [hep-ph/0505042] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    C.F. Berger et al., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [SPIRES].ADSGoogle Scholar
  37. [37]
    R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3 jet production, JHEP 04 (2009) 077 [arXiv:0901.4101] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    R. Keith Ellis, K. Melnikov and G. Zanderighi, W + 3 jet production at the Tevatron, Phys. Rev. D 80 (2009) 094002 [arXiv:0906.1445] [SPIRES].ADSGoogle Scholar
  39. [39]
    C.F. Berger et al., Next-to-leading order QCD predictions for Z, γ* + 3-jet distributions at the Tevatron, 1004.1659 [SPIRES].
  40. [40]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \( pp \to t\overline t b\overline b \) at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. full hadronic results, JHEP 03 (2010) 021 [1001.4006] [SPIRES].CrossRefGoogle Scholar
  42. [42]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist: ppttbb, JHEP 09 (2009) 109 [arXiv:0907.4723] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of \( pp \to t\overline t + 2 \) jets at next-to-leading order, Phys. Rev. Lett. 104 (2010) 162002 [1002.4009] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    T. Binoth et al., Next-to-leading order QCD corrections to \( pp \to b\overline b b\overline b \) at the LHC: the quark induced case, Phys. Lett. B 685 (2010) 293 [arXiv:0910.4379] [SPIRES].ADSGoogle Scholar
  45. [45]
    W.T. Giele and E.W.N. Glover, Higher order corrections to jet cross-sections in e + e annihilation, Phys. Rev. D 46 (1992) 1980 [SPIRES].ADSGoogle Scholar
  46. [46]
    Z. Kunszt and D.E. Soper, Calculation of jet cross-sections in hadron collisions at order α3 S, Phys. Rev. D 46 (1992) 192 [SPIRES].ADSGoogle Scholar
  47. [47]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    G. Somogyi, Subtraction with hadronic initial states: an NNLO-compatible scheme, JHEP 05 (2009) 016 [arXiv:0903.1218] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    D.A. Kosower, Antenna factorization of gauge-theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [SPIRES].ADSGoogle Scholar
  52. [52]
    J.M. Campbell, M.A. Cullen and E.W.N. Glover, Four jet event shapes in electron positron annihilation, Eur. Phys. J. C 9 (1999) 245 [hep-ph/9809429] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    M.H. Seymour and C. Tevlin, TeVJet: a general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].
  57. [57]
    M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    K. Hasegawa, S. Moch and P. Uwer, AutoDipole — Automated generation of dipole subtraction terms, arXiv:0911.4371 [SPIRES].
  59. [59]
    R. Frederix, T. Gehrmann and N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    SM and NLO Multileg Working Group collaboration, J.R. Andersen et al., The SM and NLO multileg working group: summary report, 1003.1241 [SPIRES].
  62. [62]
    T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, 1001.1307 [SPIRES].
  63. [63]
    Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four-jet observables in electron positron annihilation, Phys. Rev. D 59 (1999) 014020 [hep-ph/9806317] [SPIRES].ADSGoogle Scholar
  64. [64]
    J.M. Campbell, R.K. Ellis and F. Tramontano, Single top production and decay at next-to-leading order, Phys. Rev. D 70 (2004) 094012 [hep-ph/0408158] [SPIRES].ADSGoogle Scholar
  65. [65]
    J.M. Campbell and F. Tramontano, Next-to-leading order corrections to W t production and decay, Nucl. Phys. B 726 (2005) 109 [hep-ph/0506289] [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  67. [67]
    C.G. Bollini and J.J. Giambiagi, Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim. B 12 (1972) 20 [SPIRES].Google Scholar
  68. [68]
    J.F. Ashmore, A method of gauge invariant regularization, Lett. Nuovo Cim. 4 (1972) 289 [SPIRES].CrossRefGoogle Scholar
  69. [69]
    G.M. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimension, Nuovo Cim. Lett. 4 (1972) 329 [SPIRES].CrossRefGoogle Scholar
  70. [70]
    W. Siegel, Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett. B 84 (1979) 193 [SPIRES].ADSGoogle Scholar
  71. [71]
    W. Siegel, Inconsistency of supersymmetric dimensional regularization, Phys. Lett. B 94 (1980) 37 [SPIRES].ADSGoogle Scholar
  72. [72]
    D. Stöckinger, Regularization by dimensional reduction: consistency, quantum action principle and supersymmetry, JHEP 03 (2005) 076 [hep-ph/0503129] [SPIRES].CrossRefADSGoogle Scholar
  73. [73]
    A. Signer and D. Stöckinger, Using dimensional reduction for hadronic collisions, Nucl. Phys. B 808 (2009) 88 [arXiv:0807.4424] [SPIRES].CrossRefADSGoogle Scholar
  74. [74]
    Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 411 (1994) 397 [hep-ph/9305239] [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    S. Catani, S. Dittmaier and Z. Trócsányi, One-loop singular behaviour of QCD and SUSY QCD amplitudes with massive partons, Phys. Lett. B 500 (2001) 149 [hep-ph/0011222] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland
  2. 2.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaU.S.A.

Personalised recommendations