Advertisement

On the new massive gravity and AdS/CFT

  • Aninda SinhaEmail author
Article

Abstract

Demanding the existence of a simple holographic c-theorem, it is shown that a general (parity preserving) theory of gravity in 2+1 dimensions involving upto four derivative curvature invariants reduces to the new massive gravity theory. We consider extending the theory including upto six derivative curvature invariants. Black hole solutions are presented and consistency with 1+1 CFTs is checked. We present evidence that bulk unitarity is still in conflict with a positive CFT central charge for generic choice of parameters.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    E. Bergshoeff, O. Hohm and P. Townsend, On massive gravitons in 2+1 dimensions, arXiv:0912.2944 [SPIRES].
  3. [3]
    R. Andringa et al., Massive 3D Supergravity, Class. Quant. Grav. 27 (2010) 025010 [arXiv:0907.4658] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    O. Hohm and E. Tonni, A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds, JHEP 04 (2010) 093 [arXiv:1001.3598] [SPIRES].CrossRefGoogle Scholar
  5. [5]
    S. Deser, Ghost-free, finite, fourth order D = 3 (alas) gravity, Phys. Rev. Lett. 103 (2009) 101302 [arXiv:0904.4473] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on Massive 3D Gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    Y. Liu and Y.-w. Sun, Note on New Massive Gravity in AdS 3, JHEP 04 (2009) 106 [arXiv:0903.0536] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    Y. Liu and Y.-W. Sun, Consistent Boundary Conditions for New Massive Gravity in AdS 3, JHEP 05 (2009) 039 [arXiv:0903.2933] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [SPIRES].CrossRefGoogle Scholar
  10. [10]
    X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [SPIRES].CrossRefGoogle Scholar
  11. [11]
    J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7/CFT 6 , Gauss-Bonnet Gravity and Viscosity Bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [SPIRES].CrossRefGoogle Scholar
  12. [12]
    R.C. Myers and A. Sinha, Seeing a c-theorem from holography, to appear.Google Scholar
  13. [13]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [SPIRES].zbMATHMathSciNetGoogle Scholar
  14. [14]
    M. Nakasone and I. Oda, On Unitarity of Massive Gravity in Three Dimensions, Prog. Theor. Phys. 121 (2009) 1389 [arXiv:0902.3531] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  15. [15]
    I. Gullu and B. Tekin, Massive Higher Derivative Gravity in D-dimensional Anti-de Sitter Spacetimes, Phys. Rev. D 80 (2009) 064033 [arXiv:0906.0102] [SPIRES].ADSGoogle Scholar
  16. [16]
    R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, arXiv:1003.5357 [SPIRES].
  17. [17]
    S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Ann. Phys. 140 (1982) 372 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    W. Li, W. Song and A. Strominger, Chiral Gravity in Three Dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    K. Hotta, Y. Hyakutake, T. Kubota, T. Nishinaka and H. Tanida, Left-Right Asymmetric Holographic RG Flow with Gravitational Chern-Simons Term, Phys. Lett. B 680 (2009) 279 [arXiv:0906.1255] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, arXiv:1004.2055 [SPIRES].
  21. [21]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    A. Adams, A. Maloney, A. Sinha and S.E. Vazquez, 1/N Effects in Non-Relativistic Gauge-Gravity Duality, JHEP 03 (2009) 097 [arXiv:0812.0166] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    L.-Y. Hung and A. Sinha, Holographic quantum liquids in 1+1 dimensions, JHEP 01 (2010) 114 [arXiv:0909.3526] [SPIRES].CrossRefGoogle Scholar
  24. [24]
    R.-G. Cai, Y. Liu and Y.-W. Sun, On the z = 4 Hořava-Lifshitz Gravity, JHEP 06 (2009) 010 [arXiv:0904.4104] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    R.-G. Cai, Y. Liu and Y.-W. Sun, A Lifshitz Black Hole in Four Dimensional R 2 Gravity, JHEP 10 (2009) 080 [arXiv:0909.2807] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz Black Hole in Three Dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [SPIRES].ADSGoogle Scholar
  27. [27]
    Y.S. Myung, Y.-W. Kim and Y.-J. Park, Dilaton gravity approach to three dimensional Lifshitz black hole, arXiv:0910.4428 [SPIRES].
  28. [28]
    E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Analytic Lifshitz black holes in higher dimensions, JHEP 04 (2010) 030 [arXiv:1001.2361] [SPIRES].CrossRefGoogle Scholar
  29. [29]
    V. Sahakian, Holography, a covariant c-function and the geometry of the renormalization group, Phys. Rev. D 62 (2000) 126011 [hep-th/9910099] [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    P. Kraus and F. Larsen, Microscopic Black Hole Entropy in Theories with Higher Derivatives, JHEP 09 (2005) 034 [hep-th/0506176] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    D. Grumiller and O. Hohm, AdS 3/LCFT 2 — Correlators in New Massive Gravity, Phys. Lett. B 686 (2010) 264 [arXiv:0911.4274] [SPIRES].ADSGoogle Scholar
  32. [32]
    I. Gullu, T.C. Sisman and B. Tekin, Born-Infeld extension of new massive gravity, arXiv:1003.3935 [SPIRES].
  33. [33]
    J. Oliva, D. Tempo and R. Troncoso, Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT masive gravity, JHEP 07 (2009) 011 [arXiv:0905.1545] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    G. Giribet, J. Oliva, D. Tempo and R. Troncoso, Microscopic entropy of the three-dimensional rotating black hole of BHT massive gravity, Phys. Rev. D 80 (2009) 124046 [arXiv:0909.2564] [SPIRES].ADSGoogle Scholar
  35. [35]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    M.F. Paulos, New massive gravity, extended, arXiv:1005.1646 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations