Dual conformal constraints and infrared equations from global residue theorems in \( \mathcal{N} = 4 \) SYM theory

  • Johannes BrödelEmail author
  • Song He


Infrared equations and dual conformal constraints arise as consistency conditions on loop amplitudes in \( \mathcal{N} = 4 \) super Yang-Mills theory. These conditions are linear relations between leading singularities, which can be computed employing the recently proposed Grassmannian integral in \( \mathcal{N} = 4 \) super Yang-Mills theory. Examples for infrared equations have been shown to be implied by global residue theorems in the Grassmannian picture.

Both dual conformal constraints and infrared equations are mapped explicitly to global residue theorems for one-loop next-to-maximally-helicity-violating amplitudes. In addition, the identity relating the BCFW and its parity-conjugated form of tree-level amplitudes, is shown to emerge from a particular combination of global residue theorems.


Supersymmetric gauge theory Duality in Gauge Field Theories 


  1. [1]
    M.L. Mangano and S.J. Parke, Multi-parton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [SPIRES].
  3. [3]
    F. Cachazo and P. Svrček, Lectures on twistor strings and perturbative Yang-Mills theory, PoS(RTN2005)004 [hep-th/0504194] [SPIRES].
  4. [4]
    Z. Bern, L.J. Dixon and D.A. Kosower, On-shell methods in perturbative QCD, Annals Phys. 322 (2007) 1587 [arXiv:0704.2798] [SPIRES].CrossRefADSzbMATHGoogle Scholar
  5. [5]
    S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett. 56 (1986) 2459 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215 [SPIRES].ADSGoogle Scholar
  7. [7]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].CrossRefMathSciNetADSzbMATHGoogle Scholar
  8. [8]
    F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [SPIRES].CrossRefGoogle Scholar
  15. [15]
    L. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and Grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    E.I. Buchbinder and F. Cachazo, Two-loop amplitudes of gluons and octa-cuts in N = 4 super Yang-Mills, JHEP 11 (2005) 036 [hep-th/0506126] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    F. Cachazo and D. Skinner, On the structure of scattering amplitudes in N = 4 super Yang-Mills and N = 8 supergravity, arXiv:0801.4574 [SPIRES].
  18. [18]
    F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [SPIRES].
  19. [19]
    F. Cachazo, M. Spradlin and A. Volovich, Leading singularities of the two-loop six-particle MHV amplitude, Phys. Rev. D 78 (2008) 105022 [arXiv:0805.4832] [SPIRES].ADSGoogle Scholar
  20. [20]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B 467 (1996) 479 [hep-ph/9511336] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one-loop QCD computations, Ann. Rev. Nucl. Part. Sci. 46 (1996) 109 [hep-ph/9602280] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop self-dual and N = 4 super Yang-Mills, Phys. Lett. B 394 (1997) 105 [hep-th/9611127] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    Z. Bern, L.J. Dixon and D.A. Kosower, One-loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop ggg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, arXiv:0808.1446 [SPIRES].
  29. [29]
    Z. Kunszt, A. Signer and Z. Trócsányi, Singular terms of helicity amplitudes at one loop in QCD and the soft limit of the cross-sections of multiparton processes, Nucl. Phys. B 420 (1994) 550 [hep-ph/9401294] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    S. Catani, The singular behaviour of QCD amplitudes at two-loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [SPIRES].ADSGoogle Scholar
  31. [31]
    S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523] [SPIRES].CrossRefGoogle Scholar
  32. [32]
    A. Brandhuber, P. Heslop and G. Travaglini, One-loop amplitudes in N = 4 super Yang-Mills and anomalous dual conformal symmetry, JHEP 08 (2009) 095 [arXiv:0905.4377] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    H. Elvang, D.Z. Freedman and M. Kiermaier, Dual conformal symmetry of 1-loop NMHV amplitudes in N = 4 SYM theory, JHEP 03 (2010) 075 [arXiv:0905.4379] [SPIRES].CrossRefGoogle Scholar
  34. [34]
    J. Kaplan, Unraveling L n,k : Grassmannian kinematics, JHEP 03 (2010) 025 [arXiv:0912.0957] [SPIRES].CrossRefGoogle Scholar
  35. [35]
    M. Bullimore, L. Mason and D. Skinner, Twistor-strings, Grassmannians and leading singularities, JHEP 03 (2010) 070 [arXiv:0912.0539] [SPIRES].CrossRefGoogle Scholar
  36. [36]
    Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys. B 447 (1995) 465 [hep-ph/9503236] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons Inc, U.S.A. (1994).zbMATHGoogle Scholar
  38. [38]
    A. Tsikh, Multidimensional residues and their applications, Translations of the American Mathematical Society, volume 103, American Mathematical Society, U.S.A. (1992).zbMATHGoogle Scholar
  39. [39]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, arXiv:0808.0491 [SPIRES].
  40. [40]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and Grassmannian dualities, arXiv:0912.4912 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutGolmGermany
  2. 2.Institut für Theoretische PhysikLeibniz Universität HannoverHannoverGermany

Personalised recommendations