Suppression of lepton flavour violation from quantum corrections above MGUT

  • M. E. Gomez
  • S. Lola
  • P. Naranjo
  • J. Rodriguez-Quintero
Article

Abstract

We study the predictions for sfermion masses and Lepton Flavour Violation (LFV) for the WMAP preferred parameter space in b − τ Yukawa-unified models with massive neutrinos. A soft term structure as predicted by an Abelian flavour symmetry combined with SU(5) RGEs for scales above MGUT, results to an efficient suppression of the off-diagonal terms in the scalar soft matrices, particularly for m0 < 100GeV. Using the WMAP bounds, this implies 35 ≤ tan β ≤ 45, 350GeV ≤ m1/2 ≤ 1TeV, with the higher tan β values being favored. Within this framework, SU(5) unification becomes compatible with the current experimental bounds, in contrast to the conventional case where the soft terms are postulated at the GUT scale.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    Super-Kamiokande collaboration, Y. Fukuda et al., Constraints on neutrino oscillation parameters from the measurement of day-night solar neutrino fluxes at Super-Kamiokande, Phys. Rev. Lett. 82 (1999) 1810 [hep-ex/9812009] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    Super-Kamiokande collaboration, Y. Fukuda et al., Measurement of the solar neutrino energy spectrum using neutrino electron scattering, Phys. Rev. Lett. 82 (1999) 2430 [hep-ex/9812011] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    SNO collaboration, Q.R. Ahmad et al., Measurement of the charged current interactions produced by B-8 solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Status of global fits to neutrino oscillations, New J. Phys. 6 (2004) 122 [hep-ph/0405172] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    M.C. Gonzalez-Garcia, Global analysis of neutrino data, Phys. Scripta T 121 (2005) 72 [hep-ph/0410030] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    L.E. Ibáñez and G.G. Ross, Fermion masses and mixing angles from gauge symmetries, Phys. Lett. B 332 (1994) 100 [hep-ph/9403338] [SPIRES].ADSGoogle Scholar
  9. [9]
    E. Dudas, S. Pokorski and C.A. Savoy, Yukawa matrices from a spontaneously broken Abelian symmetry, Phys. Lett. B 356 (1995) 45 [hep-ph/9504292] [SPIRES].ADSGoogle Scholar
  10. [10]
    P. Binetruy, S. Lavignac and P. Ramond, Yukawa textures with an anomalous horizontal Abelian symmetry, Nucl. Phys. B 477 (1996) 353 [hep-ph/9601243] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    R. Barbieri, L.J. Hall, S. Raby and A. Romanino, Unified theories with U(2) flavor symmetry, Nucl. Phys. B 493 (1997) 3 [hep-ph/9610449] [SPIRES].ADSGoogle Scholar
  12. [12]
    N. Irges, S. Lavignac and P. Ramond, Predictions from an anomalous U(1) model of Yukawa hierarchies, Phys. Rev. D 58 (1998) 035003 [hep-ph/9802334] [SPIRES].ADSGoogle Scholar
  13. [13]
    S. Lola and G.G. Ross, Neutrino masses from U(1) symmetries and the Super-Kamiokande data, Nucl. Phys. B 553 (1999) 81 [hep-ph/9902283] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    S.F. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry, Phys. Lett. B 520 (2001) 243 [hep-ph/0108112] [SPIRES].ADSGoogle Scholar
  15. [15]
    S.F. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry and unification, Phys. Lett. B 574 (2003) 239 [hep-ph/0307190] [SPIRES].ADSGoogle Scholar
  16. [16]
    G. Altarelli and F. Feruglio, Models of neutrino masses and mixings, New J. Phys. 6 (2004) 106 [hep-ph/0405048] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    S. Antusch, S.F. King, M. Malinsky and G.G. Ross, Solving the SUSY flavour and CP problems with non-abelian family symmetry and supergravity, Phys. Lett. B 670 (2009) 383 [arXiv:0807.5047] [SPIRES].ADSGoogle Scholar
  18. [18]
    J.R. Ellis and D.V. Nanopoulos, Flavor changing neutral interactions in broken supersymmetric theories, Phys. Lett. B 110 (1982) 44 [SPIRES].ADSGoogle Scholar
  19. [19]
    Y. Nir and N. Seiberg, Should squarks be degenerate?, Phys. Lett. B 309 (1993) 337 [hep-ph/9304307] [SPIRES].ADSGoogle Scholar
  20. [20]
    F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    L.J. Hall, V.A. Kostelecky and S. Raby, New flavor violations in supergravity models, Nucl. Phys. B 267 (1986) 415 [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton-flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [SPIRES].ADSGoogle Scholar
  23. [23]
    J. Hisano, D. Nomura and T. Yanagida, Atmospheric neutrino oscillation and large lepton flavour violation in the SUSY SU(5) GUT, Phys. Lett. B 437 (1998) 351 [hep-ph/9711348] [SPIRES].ADSGoogle Scholar
  24. [24]
    W. Buchmüller, D. Delepine and F. Vissani, Neutrino mixing and the pattern of supersymmetry breaking, Phys. Lett. B 459 (1999) 171 [hep-ph/9904219] [SPIRES].ADSGoogle Scholar
  25. [25]
    J.R. Ellis, M.E. Gomez, G.K. Leontaris, S. Lola and D.V. Nanopoulos, Charged lepton flavour violation in the light of the Super-Kamiokande data, Eur. Phys. J. C 14 (2000) 319 [hep-ph/9911459] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    W. Buchmüller, D. Delepine and L.T. Handoko, Neutrino mixing and flavor changing processes, Nucl. Phys. B 576 (2000) 445 [hep-ph/9912317] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    J.L. Feng, Y. Nir and Y. Shadmi, Neutrino parameters, Abelian flavor symmetries and charged lepton flavor violation, Phys. Rev. D 61 (2000) 113005 [hep-ph/9911370] [SPIRES].ADSGoogle Scholar
  28. [28]
    J. Sato and K. Tobe, Neutrino masses and lepton-flavor violation in supersymmetric models with lopsided Froggatt-Nielsen charges, Phys. Rev. D 63 (2001) 116010 [hep-ph/0012333] [SPIRES].ADSGoogle Scholar
  29. [29]
    J. Hisano and K. Tobe, Neutrino masses, muon g − 2 and lepton-flavour violation in the supersymmetric see-saw model, Phys. Lett. B 510 (2001) 197 [hep-ph/0102315] [SPIRES].ADSGoogle Scholar
  30. [30]
    S. Baek, T. Goto, Y. Okada and K.-i. Okumura, Muon anomalous magnetic moment, lepton flavor violation and flavor changing neutral current processes in SUSY GUT with right-handed neutrino, Phys. Rev. D 64 (2001) 095001 [hep-ph/0104146] [SPIRES].ADSGoogle Scholar
  31. [31]
    S. Lavignac, I. Masina and C.A. Savoy, τ → μγ and μ → eγ as probes of neutrino mass models, Phys. Lett. B 520 (2001) 269 [hep-ph/0106245] [SPIRES].ADSGoogle Scholar
  32. [32]
    D.F. Carvalho, J.R. Ellis, M.E. Gomez and S. Lola, Charged-lepton-flavour violation in the CMSSM in view of the muon anomalous magnetic moment, Phys. Lett. B 515 (2001) 323 [hep-ph/0103256] [SPIRES].ADSGoogle Scholar
  33. [33]
    T. Blazek and S. F. King, Muon anomalous magnetic moment and τ → μγ in a realistic string inspired model of neutrino masses, Phys. Lett. B 518 (2001) 109 [hep-ph/0105005] [SPIRES].ADSGoogle Scholar
  34. [34]
    D.F. Carvalho, M.E. Gomez and J.C. Romao, Charged lepton flavor violation in supersymmetry with bilinear R-parity violation, Phys. Rev. D 65 (2002) 093013 [hep-ph/0202054] [SPIRES].ADSGoogle Scholar
  35. [35]
    M. Cannoni, S. Kolb and O. Panella, Lepton flavour violation in e ± e l ± e (l = μ, τ) induced by R-conserving supersymmetry, Phys. Rev. D 68 (2003) 096002 [hep-ph/0306170] [SPIRES].ADSGoogle Scholar
  36. [36]
    M. Cannoni and O. Panella, Neutralino dark matter and Higgs mediated lepton flavor violation in the minimal supersymmetric standard model, Phys. Rev. D 81 (2010) 036009 [arXiv:0910.3316] [SPIRES].ADSGoogle Scholar
  37. [37]
    E. Arganda, M.J. Herrero and A.M. Teixeira, μ − e conversion in nuclei within the CMSSM seesaw: universality versus non-universality, JHEP 10 (2007) 104 [arXiv:0707.2955] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    R. Barbieri, L.J. Hall and A. Strumia, Violations of lepton flavor and CP in supersymmetric unified theories, Nucl. Phys. B 445 (1995) 219 [hep-ph/9501334] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    M.E. Gomez and H. Goldberg, Lepton Flavor Violation in SUSY-SO(10) with Predictive Yukawa Texture, Phys. Rev. D 53 (1996) 5244 [hep-ph/9510303] [SPIRES].ADSGoogle Scholar
  40. [40]
    G. Barenboim, K. Huitu and M. Raidal, Flavour violation in SUSY SU(5) GUT at large tan β, Phys. Rev. D 63 (2001) 055006 [hep-ph/0005159] [SPIRES].ADSGoogle Scholar
  41. [41]
    L. Calibbi, A. Faccia, A. Masiero and S.K. VemPati, Lepton flavour violation from SUSY-GUTs: Where do we stand for MEG, PRISM/PRIME and a super flavour factory, Phys. Rev. D 74 (2006) 116002 [hep-ph/0605139] [SPIRES].ADSGoogle Scholar
  42. [42]
    J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [SPIRES].ADSGoogle Scholar
  43. [43]
    J. Cao, L. Wu and J.M. Yang, Lepton flavor-changing processes in R-parity violating MSSM: Zl i l j and γγ → l i l j under new bounds from l il jγ, Nucl. Phys. B 829 (2010) 370 [arXiv:0908.4556] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and μ decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [SPIRES].ADSGoogle Scholar
  45. [45]
    S. Antusch, E. Arganda, M.J. Herrero and A.M. Teixeira, Impact of θ13 on lepton flavour violating processes within SUSY seesaw, JHEP 11 (2006) 090 [hep-ph/0607263] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    F. Borzumati and T. Yamashita, Minimal supersymmetric SU(5) model with nonrenormalizable operators: Seesaw mechanism and violation of flavour and CP, arXiv:0903.2793 [SPIRES].
  47. [47]
    A. Masiero, P. Paradisi and R. Petronzio, Anatomy and phenomenology of the lepton flavor universality in SUSY theories, JHEP 11 (2008) 042 [arXiv:0807.4721] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    G.K. Leontaris and N.D. Tracas, Lepton flavour violation in unified models with U(1)-family symmetries, Phys. Lett. B 431 (1998) 90 [hep-ph/9803320] [SPIRES].MathSciNetADSGoogle Scholar
  50. [50]
    M.E. Gomez, G.K. Leontaris, S. Lola and J.D. Vergados, U(1)-textures and lepton flavor violation, Phys. Rev. D 59 (1999) 116009 [hep-ph/9810291] [SPIRES].ADSGoogle Scholar
  51. [51]
    P.H. Chankowski, K. Kowalska, S. Lavignac and S. Pokorski, Flavour changing neutral currents and inverted sfermion mass hierarchy, hep-ph/0507133 [SPIRES].
  52. [52]
    WMAP collaboration, D.N. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology, Astrophys. J. Suppl. 170 (2007) 377 [astro-ph/0603449] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    L. Calibbi, Y. Mambrini and S.K. VemPati, SUSY-GUTs, SUSY-seesaw and the neutralino dark matter, JHEP 09 (2007) 081 [arXiv:0704.3518] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    M.E. Gomez, S. Lola, P. Naranjo and J. Rodriguez-Quintero, WMAP Dark Matter Constraints on Yukawa Unification with Massive Neutrinos, JHEP 04 (2009) 043 [arXiv:0901.4013] [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    M.E. Gomez, S. Lola, P. Naranjo and J. Rodriguez-Quintero, Dark matter and Yukawa unification with massive neutrinos, AIP Conf. Proc. 1115 (2009) 273 [arXiv:0901.4332] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    E. Carquin et al., Dark matter and lepton flavour violation in Yukawa unification with massive neutrinos, PoS(IDM2008)090 [arXiv:0903.2034] [SPIRES].
  57. [57]
    J. Ellis, A. Mustafayev and K.A. Olive, What if supersymmetry breaking unifies beyond the GUT scale?, 1003.3677 [SPIRES].
  58. [58]
    V. Barger, D. Marfatia, A. Mustafayev and A. Soleimani, SUSY dark matter and lepton flavor violation, Phys. Rev. D 80 (2009) 076004 [arXiv:0908.0941] [SPIRES].ADSGoogle Scholar
  59. [59]
    R.R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo analysis of the CMSSM, JHEP 05 (2006) 002 [hep-ph/0602028] [SPIRES].CrossRefGoogle Scholar
  60. [60]
    J.R. Ellis, K.A. Olive and P. Sandick, Sparticle discovery potentials in the CMSSM and GUT-less supersymmetry-breaking scenarios, JHEP 08 (2008) 013 [arXiv:0801.1651] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    H. Baer, S. Kraml, S. Sekmen and H. Summy, Prospects for Yukawa unified SO(10) SUSY GUTs at the CERN LHC, JHEP 10 (2008) 079 [arXiv:0809.0710] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    D. Feldman, Z. Liu and P. Nath, Light higgses at the Tevatron and at the LHC and observable dark matter in SUGRA and D-branes, Phys. Lett. B 662 (2008) 190 [arXiv:0711.4591] [SPIRES].ADSGoogle Scholar
  63. [63]
    M.E. Gomez, G. Lazarides and C. Pallis, Supersymmetric cold dark matter with Yukawa unification, Phys. Rev. D 61 (2000) 123512 [hep-ph/9907261] [SPIRES].ADSGoogle Scholar
  64. [64]
    M.E. Gomez, G. Lazarides and C. Pallis, Yukawa unification, b → sγ and bino stau coannihilation, Phys. Lett. B 487 (2000) 313 [hep-ph/0004028] [SPIRES].ADSGoogle Scholar
  65. [65]
    M.E. Gomez, T. Ibrahim, P. Nath and S. Skadhauge, WMAP dark matter constraints and Yukawa unification in SUGRA models with CP phases, Phys. Rev. D 72 (2005) 095008 [hep-ph/0506243] [SPIRES].ADSGoogle Scholar
  66. [66]
    M.E. Gomez, G. Lazarides and C. Pallis, Yukawa quasi-unification, Nucl. Phys. B 638 (2002) 165 [hep-ph/0203131] [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    H. Baer, S. Kraml, S. Sekmen and H. Summy, Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs, JHEP 03 (2008) 056 [arXiv:0801.1831] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    I. Gogoladze, R. Khalid and Q. Shafi, Yukawa unification and neutralino dark matter in SU(4)c × SU(2)L × SU(2)R, Phys. Rev. D 79 (2009) 115004 [arXiv:0903.5204] [SPIRES].ADSGoogle Scholar
  69. [69]
    J. Ellis, A. Mustafayev and K.A. Olive, Resurrecting no-scale supergravity phenomenology, 1004.5399 [SPIRES].
  70. [70]
    R. Barbieri and L.J. Hall, Signals for supersymmetric unification, Phys. Lett. B 338 (1994) 212 [hep-ph/9408406] [SPIRES].ADSGoogle Scholar
  71. [71]
    J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [SPIRES].ADSGoogle Scholar
  72. [72]
    J. Ellis, S. Lola and M. Raidal, Supersymmetric grand unification and lepton universality in Klν decays, Nucl. Phys. B 812 (2009) 128 [arXiv:0809.5211] [SPIRES].CrossRefADSGoogle Scholar
  73. [73]
    E. Carquin, J. Ellis, M.E. Gomez, S. Lola and J. Rodriguez-Quintero, Search for τ flavour violation at the LHC, JHEP 05 (2009) 026 [arXiv:0812.4243] [SPIRES].CrossRefADSGoogle Scholar
  74. [74]
    J.R. Ellis, M.E. Gomez and S. Lola, CP and lepton-number violation in GUT neutrino models with abelian flavour symmetries, JHEP 07 (2007) 052 [hep-ph/0612292] [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    P. Paradisi, Constraints on SUSY lepton flavour violation by rare processes, JHEP 10 (2005) 006 [hep-ph/0505046] [SPIRES].CrossRefADSGoogle Scholar
  76. [76]
    M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [SPIRES].ADSGoogle Scholar
  77. [77]
    A. Brignole, L.E. Ibáñez and C. Muñoz, Towards a theory of soft terms for the supersymmetric Standard Model, Nucl. Phys. B 422 (1994) 125 [Erratum ibid. B 436 (1995) 747] [hep-ph/9308271] [SPIRES].CrossRefADSGoogle Scholar
  78. [78]
    R. Barbieri, L.J. Hall and A. Strumia, Hadronic flavor and CP-violating signals of superunification, Nucl. Phys. B 449 (1995) 437 [hep-ph/9504373] [SPIRES].CrossRefADSGoogle Scholar
  79. [79]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • M. E. Gomez
    • 1
  • S. Lola
    • 2
  • P. Naranjo
    • 1
  • J. Rodriguez-Quintero
    • 1
  1. 1.Departamento de Física AplicadaUniversity of HuelvaHuelvaSpain
  2. 2.Department of PhysicsUniversity of PatrasPatrasGreece

Personalised recommendations