A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX

  • Simone Alioli
  • Paolo Nason
  • Carlo Oleari
  • Emanuele Re
Open Access
Article

Abstract

In this work we illustrate the POWHEG BOX, a general computer code framework for implementing NLO calculations in shower Monte Carlo programs according to the POWHEG method. Aim of this work is to provide an illustration of the needed theoretical ingredients, a view of how the code is organized and a description of what a user should provide in order to use it.

Keywords

NLO Computations Hadronic Colliders QCD 

References

  1. [1]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    S. Frixione, P. Nason and G. Ridolfi, A Positive-Weight Next-to-Leading-Order Monte Carlo for Heavy Flavour Hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    O. Latunde-Dada, S. Gieseke and B. Webber, A positive-weight next-to-leading-order Monte Carlo for e + e annihilation to hadrons, JHEP 02 (2007) 051 [hep-ph/0612281] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    O. Latunde-Dada, Applying the POWHEG method to top pair production and decays at the ILC, Eur. Phys. J. C 58 (2008) 543 [arXiv:0806.4560] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    K. Hamilton, P. Richardson and J. Tully, A Positive-Weight Next-to-Leading Order Monte Carlo Simulation of Drell-Yan Vector Boson Production, JHEP 10 (2008) 015 [arXiv:0806.0290] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    A. Papaefstathiou and O. Latunde-Dada, NLO production of W′ bosons at hadron colliders using the MC@NLO and POWHEG methods, JHEP 07 (2009) 044 [arXiv:0901.3685] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    K. Hamilton, P. Richardson and J. Tully, A Positive-Weight Next-to-Leading Order Monte Carlo Simulation for Higgs Boson Production, JHEP 04 (2009) 116 [arXiv:0903.4345] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [arXiv:0907.4076] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO Z + 1 jet production matched with shower in POWHEG, to appear soon.Google Scholar
  14. [14]
    P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 02 (2010) 037 [arXiv:0911.5299] [SPIRES].CrossRefGoogle Scholar
  15. [15]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [SPIRES].
  18. [18]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    R. Frederix, T. Gehrmann and N. Greiner, Automation of the Dipole Subtraction Method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    K. Hasegawa, S. Moch and P. Uwer, AutoDipole – Automated generation of dipole subtraction terms, arXiv:0911.4371 [SPIRES].
  21. [21]
    T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, arXiv:1001.1307 [SPIRES].
  22. [22]
    T. Hahn and M. Pérez-Victoria, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    Y. Kurihara et al., QCD event generators with next-to-leading order matrix-elements and parton showers, Nucl. Phys. B 654 (2003) 301 [hep-ph/0212216] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    G. Bélanger et al., Automatic calculations in high energy physics and Grace at one-loop, Phys. Rept. 430 (2006) 117 [hep-ph/0308080] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    R.K. Ellis, W.T. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    C.F. Berger et al., An Automated Implementation of On-Shell Methods for One- Loop Amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].ADSGoogle Scholar
  29. [29]
    A. Lazopoulos, Multi-gluon one-loop amplitudes numerically, arXiv:0812.2998 [SPIRES].
  30. [30]
    J.-C. Winter and W.T. Giele, Calculating gluon one-loop amplitudes numerically, arXiv:0902.0094 [SPIRES].
  31. [31]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  32. [32]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 22 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 411 (1994) 397 [hep-ph/9305239] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    P. Nason, MINT: a Computer Program for Adaptive Monte Carlo Integration and Generation of Unweighted Distributions, arXiv:0709.2085 [SPIRES].
  38. [38]
    E. Boos et al., Generic user process interface for event generators, hep-ph/0109068 [SPIRES].
  39. [39]
    R. Frederix, private communication.Google Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Simone Alioli
    • 1
    • 2
  • Paolo Nason
    • 2
  • Carlo Oleari
    • 3
    • 2
  • Emanuele Re
    • 4
    • 2
  1. 1.Deutsches Elektronen-Synchrotron DESYZeuthenGermany
  2. 2.INFN, Sezione di Milano-BicoccaMilanItaly
  3. 3.Università di Milano-BicoccaMilanItaly
  4. 4.Institute for Particle Physics Phenomenology, Department of PhysicsUniversity of DurhamDurhamU.K.

Personalised recommendations