Advertisement

Exact results in ABJM theory from topological strings

  • Marcos MariñoEmail author
  • Pavel Putrov
Article

Abstract

Recently, Kapustin, Willett and Yaakov have found, by using localization techniques, that vacuum expectation values of Wilson loops in ABJM theory can be calculated with a matrix model. We show that this matrix model is closely related to Chern-Simons theory on a lens space with a gauge supergroup. This theory has a topological string large N dual, and this makes possible to solve the matrix model exactly in the large N expansion. In particular, we find the exact expression for the vacuum expectation value of a 1/6 BPS Wilson loop in the ABJM theory, as a function of the 't Hooft parameters, and in the planar limit. This expression gives an exact interpolating function between the weak and the strong coupling regimes. The behavior at strong coupling is in precise agreement with the prediction of the AdS string dual. We also give explicit results for the 1/2 BPS Wilson loop recently constructed by Drukker and Trancanelli.

Keywords

Matrix Models AdS-CFT Correspondence Topological Strings 

References

  1. [1]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES].
  2. [2]
    N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. [3]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    G.W. Semenoff and K. Zarembo, Wilson loops in SYM theory: From weak to strong coupling, Nucl. Phys. Proc. Suppl. 108 (2002) 106 [hep-th/0202156] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. [5]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [SPIRES].CrossRefGoogle Scholar
  6. [6]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional N = 6 supersymmetric Chern-Simons Theory and their string theory duals, JHEP 11 (2008) 019 [arXiv:0809.2787] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    B. Chen and J.-B. Wu, Supersymmetric Wilson Loops in N = 6 Super Chern-Simons- matter theory, Nucl. Phys. B 825 (2010) 38 [arXiv:0809.2863] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    S.-J. Rey, T. Suyama and S. Yamaguchi, Wilson Loops in Superconformal Chern-Simons Theory and Fundamental Strings in Anti-de Sitter Supergravity Dual, JHEP 03 (2009) 127 [arXiv:0809.3786] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    T. Suyama, On Large-N Solution of ABJM Theory, Nucl. Phys. B 834 (2010) 50 [arXiv:0912.1084] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    M. Mariño, Chern-Simons theory, matrix integrals and perturbative three-manifold invariants, Commun. Math. Phys. 253 (2004) 25 [hep-th/0207096] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, Matrix model as a mirror of Chern-Simons theory, JHEP 02 (2004) 010 [hep-th/0211098] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    N. Halmagyi and V. Yasnov, The spectral curve of the lens space matrix model, JHEP 11 (2009) 104 [hep-th/0311117] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [SPIRES].zbMATHMathSciNetGoogle Scholar
  16. [16]
    N. Drukker and D. Trancanelli, A supermatrix model for N = 6 super Chern-Simons-matter theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [SPIRES].CrossRefGoogle Scholar
  17. [17]
    M. Mariño, Open string amplitudes and large order behavior in topological string theory, JHEP 03 (2008) 060 [hep-th/0612127] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, Remodeling the B-model, Commun. Math. Phys. 287 (2009) 117 [arXiv:0709.1453] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  19. [19]
    N. Halmagyi, T. Okuda and V. Yasnov, Large-N duality, lens spaces and the Chern-Simons matrix model, JHEP 04 (2004) 014 [hep-th/0312145] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    A. Brini and A. Tanzini, Exact results for topological strings on resolved Y(p,q) singularities, Commun. Math. Phys. 289 (2009) 205 [arXiv:0804.2598] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  21. [21]
    B. Haghighat, A. Klemm and M. Rauch, Integrability of the holomorphic anomaly equations, JHEP 10 (2008) 097 [arXiv:0809.1674] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    L. Álvarez-Gaumé and J.L. Manes, Supermatrix models, Mod. Phys. Lett. A 6 (1991) 2039 [SPIRES].ADSGoogle Scholar
  23. [23]
    S.A. Yost, Supermatrix models, Int. J. Mod. Phys. A 7 (1992) 6105 [hep-th/9111033] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    R. Dijkgraaf and C. Vafa, N = 1 supersymmetry, deconstruction and bosonic gauge theories, hep-th/0302011 [SPIRES].
  25. [25]
    R. Dijkgraaf, S. Gukov, V.A. Kazakov and C. Vafa, Perturbative analysis of gauged matrix models, Phys. Rev. D 68 (2003) 045007 [hep-th/0210238] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The Theta-Angle in N = 4 Super Yang-Mills Theory, arXiv:0804.2907 [SPIRES].
  27. [27]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    I. Bars, Supergroups And Their Representations, Lectures Appl. Math. 21 (1983) 17 [SPIRES].MathSciNetGoogle Scholar
  29. [29]
    M. Mariño, Les Houches lectures on matrix models and topological strings, hep-th/0410165 [SPIRES].
  30. [30]
    M. Mariño, S. Pasquetti and P. Putrov, Large-N duality beyond the genus expansion, arXiv:0911.4692 [SPIRES].
  31. [31]
    G. Bonelli and H. Safaai, On gauge/string correspondence and mirror symmetry, JHEP 06 (2008) 050 [arXiv:0804.2629] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    M. Aganagic, V. Bouchard and A. Klemm, Topological Strings and (Almost) Modular Forms, Commun. Math. Phys. 277 (2008) 771 [hep-th/0607100] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  33. [33]
    N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Département de Physique ThéoriqueUniversité de GenéveGenéveSwitzerland
  2. 2.Section de MathématiquesUniversité de GenéveGenéveSwitzerland

Personalised recommendations