Scalar gauge fields

Open Access
Article

Abstract

In this paper we give a variation of the gauge procedure which employs a scalar gauge field, B(x), in addition to the usual vector gauge field, Aμ(x). We study this variant of the usual gauge procedure in the context of a complex scalar, matter field ϕ(x) with a U(1) symmetry. We will focus most on the case when ϕ develops a vacuum expectation value via spontaneous symmetry breaking. We find that under these conditions the scalar gauge field mixes with the Goldstone boson that arises from the breaking of a global symmetry. Some other interesting features of this scalar gauge model are: (i) The new gauge procedure gives rise to terms which violate C and CP symmetries. This may have have applications in cosmology or for CP violation in particle physics; (ii) the existence of mass terms in the Lagrangian which respect the new extended gauge symmetry. Thus one can have gauge field mass terms even in the absence of the usual Higgs mechanism; (iii) the emergence of a sine-Gordon potential for the scalar gauge field; (iv) a natural, axion-like suppression of the interaction strength of the scalar gauge boson.

Keywords

Gauge Symmetry Spontaneous Symmetry Breaking 

References

  1. [1]
    E.C.G. Stueckelberg, Interaction energy in electrodynamics and in the field theory of nuclear forces, Helv. Phys. Acta 11 (1938) 225 [INSPIRE].MATHGoogle Scholar
  2. [2]
    H. Ruegg and M. Ruiz-Altaba, The Stueckelberg field, Int. J. Mod. Phys. A 19 (2004) 3265 [hep-th/0304245] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Guendelman, Gauge invariance and mass without spontaneous symmetry breaking, Phys. Rev. Lett. 43 (1979) 543 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Kato and D. Singleton, Gauging dual symmetry, Int. J. Theor. Phys. 41 (2002) 1563 [hep-th/0106277] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    J.D. Jackson, Classical Electrodynamics, 3rd edition, section 6.11, John Wiley & Sons Inc., 1999.Google Scholar
  6. [6]
    A. Saa, Local electromagnetic duality and gauge invariance, Class. Quant. Grav. 28 (2011) 127002 [arXiv:1101.3927] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    M. Chaves and H. Morales, Unification of SU(2) × U(1) using a generalized covariant derivative and U(3), Mod. Phys. Lett. A 13 (1998) 2021 [hep-th/9801088] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Chaves and H. Morales, Grand unification using a generalized Yang-Mills theory, Mod. Phys. Lett. A 15 (2000) 197 [hep-th/9911162] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Singleton, A. Kato and A. Yoshida, Gauge procedure with gauge fields of various ranks, Phys. Lett. A 330 (2004) 326 [hep-th/0408031] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    E. Guendelman, Coupling Electromagnetism to Global Charge, Int. J. Mod. Phys. A 28 (2013) 1350169 [arXiv:1307.6913] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    E.I. Guendelman and R. Steiner, Confining Boundary conditions from dynamical Coupling Constants, arXiv:1311.2536 [INSPIRE].
  12. [12]
    J.M. Cornwall, Dynamical Mass Generation in Continuum QCD, Phys. Rev. D 26 (1982) 1453 [INSPIRE].ADSGoogle Scholar
  13. [13]
    Ta-Pei Cheng and Ling-Fong Li, Gauge Theory of elementary Particle Physics, Oxford Science Publications, Clarendon Press, Oxford, Oxford University Press, New York, 1988.Google Scholar
  14. [14]
    F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    F. Bezrukov, The Higgs field as an inflaton, Class. Quant. Grav. 30 (2013) 214001 [arXiv:1307.0708] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    R. Rajaraman, Solitons and Instantons: an Introduction to Solitons and Instantons in Quantum Field Theory, pg. 34, North-Holland, 1989.Google Scholar
  17. [17]
    J.E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys. 82 (2010) 557 [arXiv:0807.3125] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    E. Leader and C. Lorce, The angular momentum controversy: Whats it all about and does it matter?, Phys. Rept. (2013) [arXiv:1309.4235] [INSPIRE].
  19. [19]
    D. Singleton, ‘Electromagneticanswer to the nucleon spin puzzle, Phys. Lett. B 427 (1998) 155 [hep-ph/9710201] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Singleton and V.D. Dzhunushaliev, Orbital angular momentum in the nucleon spin, Found. Phys. 30 (2000) 1093 [hep-ph/9807239] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Physics DepartmentBen Gurion University of the NegevBeer ShevaIsrael
  2. 2.Department of PhysicsCalifornia State UniversityFresnoU.S.A

Personalised recommendations