Non-abelian infrared divergences on the celestial sphere

Abstract

We consider the infrared factorisation of non-abelian multi-particle scattering amplitudes, and we study the form of the universal colour operator responsible for infrared divergences, when expressed in terms of coordinates on the ‘celestial sphere’ intersecting the future light-cone at asymptotic distances. We find that colour-dipole contributions to the infrared operator, to all orders in perturbation theory, have a remarkably simple expression in these coordinates, with scale and coupling dependence factorised from kinematics and colour. Generalising earlier suggestions in the abelian theory, we then show that the infrared operator can be computed as a correlator of vertex operators in a conformal field theory of Lie-algebra-valued free bosons on the celestial sphere. We verify by means of the OPE that the theory correctly predicts the all-order structure of collinear limits, and the tree-level factorisation of soft real radiation.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    F. Bloch and A. Nordsieck, Note on the Radiation Field of the electron, Phys. Rev. 52 (1937) 54 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  2. [2]

    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  3. [3]

    T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    G.F. Sterman, Mass Divergences in Annihilation Processes. 1. Origin and Nature of Divergences in Cut Vacuum Polarization Diagrams, Phys. Rev. D 17 (1978) 2773 [INSPIRE].

  5. [5]

    G.F. Sterman, Mass Divergences in Annihilation Processes. 2. Cancellation of Divergences in Cut Vacuum Polarization Diagrams, Phys. Rev. D 17 (1978) 2789 [INSPIRE].

  6. [6]

    P.P. Kulish and L.D. Faddeev, Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys. 4 (1970) 745 [INSPIRE].

    MATH  Article  Google Scholar 

  7. [7]

    G. Giavarini and G. Marchesini, IR Finite S Matrix in the QCD Coherent State Basis, Nucl. Phys. B 296 (1988) 546 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    A.H. Mueller, On the Asymptotic Behavior of the Sudakov Form-factor, Phys. Rev. D 20 (1979) 2037 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    J.C. Collins, Algorithm to Compute Corrections to the Sudakov Form-factor, Phys. Rev. D 22 (1980) 1478 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    A. Sen, Asymptotic Behavior of the Sudakov Form-Factor in QCD, Phys. Rev. D 24 (1981) 3281 [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    A. Sen, Asymptotic Behavior of the Wide Angle On-Shell Quark Scattering Amplitudes in Nonabelian Gauge Theories, Phys. Rev. D 28 (1983) 860 [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    J.C. Collins, Sudakov form-factors, Adv. Ser. Direct. High Energy Phys. 5 (1989) 573 [hep-ph/0312336] [INSPIRE].

  13. [13]

    L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].

  15. [15]

    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].

  16. [16]

    L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].

  18. [18]

    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 11 (2013) 024] [arXiv:0903.1126] [INSPIRE].

  20. [20]

    E. Gardi and L. Magnea, Infrared singularities in QCD amplitudes, Nuovo Cim. C 32N5-6 (2009) 137 [arXiv:0908.3273] [INSPIRE].

  21. [21]

    E. Gardi, J.M. Smillie and C.D. White, The Non-Abelian Exponentiation theorem for multiple Wilson lines, JHEP 06 (2013) 088 [arXiv:1304.7040] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  22. [22]

    I. Feige and M.D. Schwartz, Hard-Soft-Collinear Factorization to All Orders, Phys. Rev. D 90 (2014) 105020 [arXiv:1403.6472] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    O. Erdoğan and G. Sterman, Ultraviolet divergences and factorization for coordinate-space amplitudes, Phys. Rev. D 91 (2015) 065033 [arXiv:1411.4588] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    Y. Ma, A Forest Formula to Subtract Infrared Singularities in Amplitudes for Wide-angle Scattering, JHEP 05 (2020) 012 [arXiv:1910.11304] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    E. Gardi, E. Laenen, G. Stavenga and C.D. White, Webs in multiparton scattering using the replica trick, JHEP 11 (2010) 155 [arXiv:1008.0098] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  26. [26]

    A. Mitov, G. Sterman and I. Sung, Diagrammatic Exponentiation for Products of Wilson Lines, Phys. Rev. D 82 (2010) 096010 [arXiv:1008.0099] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    E. Gardi and C.D. White, General properties of multiparton webs: Proofs from combinatorics, JHEP 03 (2011) 079 [arXiv:1102.0756] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    E. Gardi, J.M. Smillie and C.D. White, On the renormalization of multiparton webs, JHEP 09 (2011) 114 [arXiv:1108.1357] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  29. [29]

    A.A. Vladimirov, Generating function for web diagrams, Phys. Rev. D 90 (2014) 066007 [arXiv:1406.6253] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    A.A. Vladimirov, Exponentiation for products of Wilson lines within the generating function approach, JHEP 06 (2015) 120 [arXiv:1501.03316] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. [31]

    O. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett. 117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    J.M. Henn and B. Mistlberger, Four-Gluon Scattering at Three Loops, Infrared Structure, and the Regge Limit, Phys. Rev. Lett. 117 (2016) 171601 [arXiv:1608.00850] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    O. Almelid, C. Duhr, E. Gardi, A. McLeod and C.D. White, Bootstrapping the QCD soft anomalous dimension, JHEP 09 (2017) 073 [arXiv:1706.10162] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. [34]

    J.M. Henn, G.P. Korchemsky and B. Mistlberger, The full four-loop cusp anomalous dimension in \( \mathcal{N} \) = 4 super Yang-Mills and QCD, JHEP 04 (2020) 018 [arXiv:1911.10174] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. [35]

    A. von Manteuffel, E. Panzer and R.M. Schabinger, Cusp and collinear anomalous dimensions in four-loop QCD from form factors, Phys. Rev. Lett. 124 (2020) 162001 [arXiv:2002.04617] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    N. Agarwal, A. Danish, L. Magnea, S. Pal and A. Tripathi, Multiparton webs beyond three loops, JHEP 05 (2020) 128 [arXiv:2003.09714] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    B. Agarwal, A. von Manteuffel, E. Panzer and R.M. Schabinger, Four-loop collinear anomalous dimensions in QCD and \( \mathcal{N} \) = 4 super Yang-Mills, arXiv:2102.09725 [INSPIRE].

  38. [38]

    N. Agarwal, L. Magnea, S. Pal and A. Tripathi, Cwebs beyond three loops in multiparton amplitudes, JHEP 03 (2021) 188 [arXiv:2102.03598] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    W.J. Torres Bobadilla et al., May the four be with you: Novel IR-subtraction methods to tackle NNLO calculations, Eur. Phys. J. C 81 (2021) 250 [arXiv:2012.02567] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. [41]

    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  42. [42]

    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21.

  43. [43]

    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103.

  44. [44]

    V. Lysov, S. Pasterski and A. Strominger, Low’s Subleading Soft Theorem as a Symmetry of QED, Phys. Rev. Lett. 113 (2014) 111601 [arXiv:1407.3814] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    T. He, P. Mitra and A. Strominger, 2D Kac-Moody Symmetry of 4D Yang-Mills Theory, JHEP 10 (2016) 137 [arXiv:1503.02663] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. [47]

    T. Adamo and E. Casali, Perturbative gauge theory at null infinity, Phys. Rev. D 91 (2015) 125022 [arXiv:1504.02304] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    A. Strominger, Magnetic Corrections to the Soft Photon Theorem, Phys. Rev. Lett. 116 (2016) 031602 [arXiv:1509.00543] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  49. [49]

    B. Gabai and A. Sever, Large gauge symmetries and asymptotic states in QED, JHEP 12 (2016) 095 [arXiv:1607.08599] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  50. [50]

    C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP 01 (2017) 112 [arXiv:1609.00732] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  51. [51]

    A. Nande, M. Pate and A. Strominger, Soft Factorization in QED from 2D Kac-Moody Symmetry, JHEP 02 (2018) 079 [arXiv:1705.00608] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  52. [52]

    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].

  53. [53]

    S. Albayrak, C. Chowdhury and S. Kharel, On loop celestial amplitudes for gauge theory and gravity, Phys. Rev. D 102 (2020) 126020 [arXiv:2007.09338] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    H.A. González, A. Puhm and F. Rojas, Loop corrections to celestial amplitudes, Phys. Rev. D 102 (2020) 126027 [arXiv:2009.07290] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    S. Pasterski, S.-H. Shao and A. Strominger, Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere, Phys. Rev. D 96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. [56]

    S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D 96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    S. Pasterski, S.-H. Shao and A. Strominger, Gluon Amplitudes as 2d Conformal Correlators, Phys. Rev. D 96 (2017) 085006 [arXiv:1706.03917] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. [58]

    A. Schreiber, A. Volovich and M. Zlotnikov, Tree-level gluon amplitudes on the celestial sphere, Phys. Lett. B 781 (2018) 349 [arXiv:1711.08435] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  59. [59]

    S. Stieberger and T.R. Taylor, Symmetries of Celestial Amplitudes, Phys. Lett. B 793 (2019) 141 [arXiv:1812.01080] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  60. [60]

    E. Himwich and A. Strominger, Celestial current algebra from Low’s subleading soft theorem, Phys. Rev. D 100 (2019) 065001 [arXiv:1901.01622] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. [61]

    W. Fan, A. Fotopoulos and T.R. Taylor, Soft Limits of Yang-Mills Amplitudes and Conformal Correlators, JHEP 05 (2019) 121 [arXiv:1903.01676] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  62. [62]

    M. Pate, A.-M. Raclariu and A. Strominger, Conformally Soft Theorem in Gauge Theory, Phys. Rev. D 100 (2019) 085017 [arXiv:1904.10831] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  63. [63]

    D. Nandan, A. Schreiber, A. Volovich and M. Zlotnikov, Celestial Amplitudes: Conformal Partial Waves and Soft Limits, JHEP 10 (2019) 018 [arXiv:1904.10940] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  64. [64]

    A. Fotopoulos and T.R. Taylor, Primary Fields in Celestial CFT, JHEP 10 (2019) 167 [arXiv:1906.10149] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  65. [65]

    S. Ebert, A. Sharma and D. Wang, Descendants in celestial CFT and emergent multi-collinear factorization, JHEP 03 (2021) 030 [arXiv:2009.07881] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    N. Arkani-Hamed, M. Pate, A.-M. Raclariu and A. Strominger, Celestial Amplitudes from UV to IR, arXiv:2012.04208 [INSPIRE].

  67. [67]

    W. Fan, A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Conformal Blocks from Celestial Gluon Amplitudes, arXiv:2103.04420 [INSPIRE].

  68. [68]

    D. Neill and F. Ringer, Soft Fragmentation on the Celestial Sphere, JHEP 06 (2020) 086 [arXiv:2003.02275] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    N. Kalyanapuram, Soft Gravity by Squaring Soft QED on the Celestial Sphere, Phys. Rev. D 103 (2021) 085016 [arXiv:2011.11412] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  70. [70]

    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  71. [71]

    G.P. Korchemsky, On near forward high-energy scattering in QCD, Phys. Lett. B 325 (1994) 459 [hep-ph/9311294] [INSPIRE].

  72. [72]

    I.A. Korchemskaya and G.P. Korchemsky, High-energy scattering in QCD and cross singularities of Wilson loops, Nucl. Phys. B 437 (1995) 127 [hep-ph/9409446] [INSPIRE].

  73. [73]

    I.A. Korchemskaya and G.P. Korchemsky, Evolution equation for gluon Regge trajectory, Phys. Lett. B 387 (1996) 346 [hep-ph/9607229] [INSPIRE].

  74. [74]

    V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, An infrared approach to Reggeization, Phys. Rev. D 85 (2012) 071104 [arXiv:1108.5947] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, The infrared structure of gauge theory amplitudes in the high-energy limit, JHEP 12 (2011) 021 [arXiv:1109.3581] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  76. [76]

    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  77. [77]

    Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The Duality Between Color and Kinematics and its Applications, arXiv:1909.01358 [INSPIRE].

  78. [78]

    S. Catani, D. de Florian and G. Rodrigo, The triple collinear limit of one loop QCD amplitudes, Phys. Lett. B 586 (2004) 323 [hep-ph/0312067] [INSPIRE].

  79. [79]

    A. Bassetto, M. Ciafaloni and G. Marchesini, Jet Structure and Infrared Sensitive Quantities in Perturbative QCD, Phys. Rept. 100 (1983) 201 [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  81. [81]

    V.S. Dotsenko and S.N. Vergeles, Renormalizability of Phase Factors in the Nonabelian Gauge Theory, Nucl. Phys. B 169 (1980) 527 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  82. [82]

    R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].

    ADS  Article  Google Scholar 

  83. [83]

    G.P. Korchemsky and A.V. Radyushkin, Loop Space Formalism and Renormalization Group for the Infrared Asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    G.P. Korchemsky and A.V. Radyushkin, Infrared asymptotics of perturbative QCD: Renormalization properties of the wilson loops in higher orders of perturbation theory, Sov. J. Nucl. Phys. 44 (1986) 877 [INSPIRE].

    Google Scholar 

  85. [85]

    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, On quartic colour factors in splitting functions and the gluon cusp anomalous dimension, Phys. Lett. B 782 (2018) 627 [arXiv:1805.09638] [INSPIRE].

    ADS  Article  Google Scholar 

  87. [87]

    A. Grozin, J. Henn and M. Stahlhofen, On the Casimir scaling violation in the cusp anomalous dimension at small angle, JHEP 10 (2017) 052 [arXiv:1708.01221] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  88. [88]

    J.M. Henn, T. Peraro, M. Stahlhofen and P. Wasser, Matter dependence of the four-loop cusp anomalous dimension, Phys. Rev. Lett. 122 (2019) 201602 [arXiv:1901.03693] [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    G. Falcioni, E. Gardi, C. Milloy and L. Vernazza, Climbing three-Reggeon ladders: four-loop amplitudes in the high-energy limit in full colour, arXiv:2012.00613 [INSPIRE].

  90. [90]

    V. Ahrens, M. Neubert and L. Vernazza, Structure of Infrared Singularities of Gauge-Theory Amplitudes at Three and Four Loops, JHEP 09 (2012) 138 [arXiv:1208.4847] [INSPIRE].

    ADS  Article  Google Scholar 

  91. [91]

    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes and N3LL resummation for n-jet processes, JHEP 01 (2020) 025 [arXiv:1908.11379] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  92. [92]

    F.C.S. Brown, Polylogarithmes multiples uniformes en une variable, Compt. Rend. Math. 338 (2004) 527 [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  93. [93]

    O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys. 08 (2014) 589 [arXiv:1302.6445] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  94. [94]

    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  95. [95]

    L. Magnea, Analytic resummation for the quark form-factor in QCD, Nucl. Phys. B 593 (2001) 269 [hep-ph/0006255] [INSPIRE].

  96. [96]

    V. Del Duca, G. Falcioni, L. Magnea and L. Vernazza, Analyzing high-energy factorization beyond next-to-leading logarithmic accuracy, JHEP 02 (2015) 029 [arXiv:1409.8330] [INSPIRE].

    ADS  Article  Google Scholar 

  97. [97]

    P.H. Ginsparg, Applied Conformal Field Theory, in Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena, (1988) [hep-th/9108028] [INSPIRE].

  98. [98]

    P. Goddard and D.I. Olive, Kac-Moody and Virasoro Algebras in Relation to Quantum Physics, Int. J. Mod. Phys. A 1 (1986) 303 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  99. [99]

    S. Caron-Huot, When does the gluon reggeize?, JHEP 05 (2015) 093 [arXiv:1309.6521] [INSPIRE].

    ADS  Article  Google Scholar 

  100. [100]

    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2007), [DOI] [INSPIRE].

  101. [101]

    I.I. Balitsky and V.M. Braun, Evolution Equations for QCD String Operators, Nucl. Phys. B 311 (1989) 541 [INSPIRE].

    ADS  Article  Google Scholar 

  102. [102]

    V.M. Braun, G.P. Korchemsky and D. Müller, The uses of conformal symmetry in QCD, Prog. Part. Nucl. Phys. 51 (2003) 311 [hep-ph/0306057] [INSPIRE].

  103. [103]

    P. Kravchuk and D. Simmons-Duffin, Light-ray operators in conformal field theory, JHEP 11 (2018) 102 [arXiv:1805.00098] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  104. [104]

    M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and conformal colliders, JHEP 01 (2021) 128 [arXiv:1905.01311] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  105. [105]

    H. Chen, I. Moult and H.X. Zhu, Quantum Interference in Jet Substructure from Spinning Gluons, Phys. Rev. Lett. 126 (2021) 112003 [arXiv:2011.02492] [INSPIRE].

    ADS  Article  Google Scholar 

  106. [106]

    H. Chen, I. Moult and H.X. Zhu, Spinning Gluons from the QCD Light-Ray OPE, arXiv:2104.00009 [INSPIRE].

  107. [107]

    S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].

    ADS  Article  Google Scholar 

  108. [108]

    O. Erdoğan and G. Sterman, Gauge Theory Webs and Surfaces, Phys. Rev. D 91 (2015) 016003 [arXiv:1112.4564] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  109. [109]

    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, JHEP 01 (2016) 140 [arXiv:1510.07803] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  110. [110]

    A. Banfi, B.K. El-Menoufi and P.F. Monni, The Sudakov radiator for jet observables and the soft physical coupling, JHEP 01 (2019) 083 [arXiv:1807.11487] [INSPIRE].

    ADS  Article  Google Scholar 

  111. [111]

    S. Catani, D. De Florian and M. Grazzini, Soft-gluon effective coupling and cusp anomalous dimension, Eur. Phys. J. C 79 (2019) 685 [arXiv:1904.10365] [INSPIRE].

    ADS  Article  Google Scholar 

  112. [112]

    T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons, Phys. Rev. D 79 (2009) 125004 [Erratum ibid. 80 (2009) 109901] [arXiv:0904.1021] [INSPIRE].

  113. [113]

    A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791] [INSPIRE].

    ADS  Article  Google Scholar 

  114. [114]

    A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676] [INSPIRE].

    ADS  Article  Google Scholar 

  115. [115]

    A. Mitov, G.F. Sterman and I. Sung, The Massive Soft Anomalous Dimension Matrix at Two Loops, Phys. Rev. D 79 (2009) 094015 [arXiv:0903.3241] [INSPIRE].

    ADS  Article  Google Scholar 

  116. [116]

    N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [INSPIRE].

    ADS  Article  Google Scholar 

  117. [117]

    Y.-T. Chien, M.D. Schwartz, D. Simmons-Duffin and I.W. Stewart, Jet Physics from Static Charges in AdS, Phys. Rev. D 85 (2012) 045010 [arXiv:1109.6010] [INSPIRE].

    ADS  Article  Google Scholar 

  118. [118]

    L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and S. Uccirati, Factorisation and Subtraction beyond NLO, JHEP 12 (2018) 062 [arXiv:1809.05444] [INSPIRE].

    ADS  Article  Google Scholar 

  119. [119]

    S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].

  120. [120]

    S.D. Badger and E.W.N. Glover, Two loop splitting functions in QCD, JHEP 07 (2004) 040 [hep-ph/0405236] [INSPIRE].

  121. [121]

    C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys. Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  122. [122]

    Y. Li and H.X. Zhu, Single soft gluon emission at two loops, JHEP 11 (2013) 080 [arXiv:1309.4391] [INSPIRE].

    ADS  Article  Google Scholar 

  123. [123]

    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  124. [124]

    L.F. Alday, Universal structure of subleading infrared poles at strong coupling, JHEP 07 (2009) 047 [arXiv:0904.3983] [INSPIRE].

    ADS  Article  Google Scholar 

  125. [125]

    H.A. González and F. Rojas, The structure of IR divergences in celestial gluon amplitudes, arXiv:2104.12979 [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Magnea.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2104.10254

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magnea, L. Non-abelian infrared divergences on the celestial sphere. J. High Energ. Phys. 2021, 282 (2021). https://doi.org/10.1007/JHEP05(2021)282

Download citation

Keywords

  • Scattering Amplitudes
  • Perturbative QCD
  • Conformal Field Theory