Axion assisted Schwinger effect


We point out an enhancement of the pair production rate of charged fermions in a strong electric field in the presence of time dependent classical axion-like background field, which we call axion assisted Schwinger effect. While the standard Schwinger production rate is proportional to \( \exp \left(-\pi \left({m}^2+{p}_T^2\right)/E\right) \), with m and pT denoting the fermion mass and its momentum transverse to the electric field E, the axion assisted Schwinger effect can be enhanced at large momenta to exp(−πm2/E). The origin of this enhancement is a coupling between the fermion spin and its momentum, induced by the axion velocity. As a non-trivial validation of our result, we show its invariance under field redefinitions associated with a chiral rotation and successfully reproduce the chiral anomaly equation in the presence of helical electric and magnetic fields. We comment on implications of this result for axion cosmology, focussing on axion inflation and axion dark matter detection.

A preprint version of the article is available at ArXiv.


  1. [1]

    W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936) 714 [physics/0605038] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  2. [2]

    J. S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    R. D. Peccei and H. R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    M. Pospelov, A. Ritz and M. B. Voloshin, Bosonic super-WIMPs as keV-scale dark matter, Phys. Rev. D 78 (2008) 115012 [arXiv:0807.3279] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    Y. V. Stadnik and V. V. Flambaum, Axion-induced effects in atoms, molecules, and nuclei: Parity nonconservation, anapole moments, electric dipole moments, and spin-gravity and spin-axion momentum couplings, Phys. Rev. D 89 (2014) 043522 [arXiv:1312.6667] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    P. W. Graham and S. Rajendran, New Observables for Direct Detection of Axion Dark Matter, Phys. Rev. D 88 (2013) 035023 [arXiv:1306.6088] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    M. S. Turner and L. M. Widrow, Inflation Produced, Large Scale Magnetic Fields, Phys. Rev. D 37 (1988) 2743 [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    W. D. Garretson, G. B. Field and S. M. Carroll, Primordial magnetic fields from pseudo Goldstone bosons, Phys. Rev. D 46 (1992) 5346 [hep-ph/9209238] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    M. M. Anber and L. Sorbo, N-flationary magnetic fields, JCAP 10 (2006) 018 [astro-ph/0606534] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    A. I. Nikishov, Pair production by a constant external field, Zh. Eksp. Teor. Fiz. 57 (1969) 1210 [INSPIRE].

    Google Scholar 

  14. [14]

    F. V. Bunkin and I. I. Tugov, The possibility of electron-positron pair production in vacuum when laser radiation is focussed, Dokl. Akad. Nauk Ser. Fiz. 187 (1969) 541 [INSPIRE].

    Google Scholar 

  15. [15]

    S. L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    J. S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    H. B. Nielsen and M. Ninomiya, The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B 130 (1983) 389 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    H. J. Warringa, Dynamics of the Chiral Magnetic Effect in a weak magnetic field, Phys. Rev. D 86 (2012) 085029 [arXiv:1205.5679] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    V. Domcke and K. Mukaida, Gauge Field and Fermion Production during Axion Inflation, JCAP 11 (2018) 020 [arXiv:1806.08769] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    P. Copinger, K. Fukushima and S. Pu, Axial Ward identity and the Schwinger mechanism — Applications to the real-time chiral magnetic effect and condensates, Phys. Rev. Lett. 121 (2018) 261602 [arXiv:1807.04416] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    V. Domcke, Y. Ema and K. Mukaida, Chiral Anomaly, Schwinger Effect, Euler-Heisenberg Lagrangian, and application to axion inflation, JHEP 02 (2020) 055 [arXiv:1910.01205] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    R. Schutzhold, H. Gies and G. Dunne, Dynamically assisted Schwinger mechanism, Phys. Rev. Lett. 101 (2008) 130404 [arXiv:0807.0754] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    C. K. Dumlu and G. V. Dunne, The Stokes Phenomenon and Schwinger Vacuum Pair Production in Time-Dependent Laser Pulses, Phys. Rev. Lett. 104 (2010) 250402 [arXiv:1004.2509] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    K. Freese, J. A. Frieman and A. V. Olinto, Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    Y. Nomura, T. Watari and M. Yamazaki, Pure Natural Inflation, Phys. Lett. B 776 (2018) 227 [arXiv:1706.08522] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    P. Adshead and M. Wyman, Chromo-Natural Inflation: Natural inflation on a steep potential with classical non-Abelian gauge fields, Phys. Rev. Lett. 108 (2012) 261302 [arXiv:1202.2366] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    A. Maleknejad, M. M. Sheikh-Jabbari and J. Soda, Gauge Fields and Inflation, Phys. Rept. 528 (2013) 161 [arXiv:1212.2921] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    V. Domcke, B. Mares, F. Muia and M. Pieroni, Emerging chromo-natural inflation, JCAP 04 (2019) 034 [arXiv:1807.03358] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    V. Domcke and S. Sandner, The Different Regimes of Axion Gauge Field Inflation, JCAP 09 (2019) 038 [arXiv:1905.11372] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    V. Domcke, Y. Ema, K. Mukaida and R. Sato, Chiral Anomaly and Schwinger Effect in Non-Abelian Gauge Theories, JHEP 03 (2019) 111 [arXiv:1812.08021] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. [31]

    P. Adshead, L. Pearce, M. Peloso, M. A. Roberts and L. Sorbo, Phenomenology of fermion production during axion inflation, JCAP 06 (2018) 020 [arXiv:1803.04501] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    S.-L. Cheng, W. Lee and K.-W. Ng, Numerical study of pseudoscalar inflation with an axion-gauge field coupling, Phys. Rev. D 93 (2016) 063510 [arXiv:1508.00251] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    A. Notari and K. Tywoniuk, Dissipative Axial Inflation, JCAP 12 (2016) 038 [arXiv:1608.06223] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    G. Dall’Agata, S. González-Martín, A. Papageorgiou and M. Peloso, Warm dark energy, JCAP 08 (2020) 032 [arXiv:1912.09950] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    V. Domcke, V. Guidetti, Y. Welling and A. Westphal, Resonant backreaction in axion inflation, JCAP 09 (2020) 009 [arXiv:2002.02952] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    N. Barnaby, E. Pajer and M. Peloso, Gauge Field Production in Axion Inflation: Consequences for Monodromy, non-Gaussianity in the CMB, and Gravitational Waves at Interferometers, Phys. Rev. D 85 (2012) 023525 [arXiv:1110.3327] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    J. L. Cook and L. Sorbo, Particle production during inflation and gravitational waves detectable by ground-based interferometers, Phys. Rev. D 85 (2012) 023534 [Erratum ibid. 86 (2012) 069901] [arXiv:1109.0022] [INSPIRE].

  38. [38]

    M. M. Anber and L. Sorbo, Non-Gaussianities and chiral gravitational waves in natural steep inflation, Phys. Rev. D 85 (2012) 123537 [arXiv:1203.5849] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    A. Linde, S. Mooij and E. Pajer, Gauge field production in supergravity inflation: Local non-Gaussianity and primordial black holes, Phys. Rev. D 87 (2013) 103506 [arXiv:1212.1693] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    J. García-Bellido, M. Peloso and C. Unal, Gravitational waves at interferometer scales and primordial black holes in axion inflation, JCAP 12 (2016) 031 [arXiv:1610.03763] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    V. Domcke, F. Muia, M. Pieroni and L. T. Witkowski, PBH dark matter from axion inflation, JCAP 07 (2017) 048 [arXiv:1704.03464] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    O. Özsoy and Z. Lalak, Primordial black holes as dark matter and gravitational waves from bumpy axion inflation, JCAP 01 (2021) 040 [arXiv:2008.07549] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    J. Preskill, M. B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    L. F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    Y. V. Stadnik and V. V. Flambaum, Manifestations of dark matter and variations of fundamental constants in atoms and astrophysical phenomena, [arXiv:1509.00966] [INSPIRE].

  47. [47]

    A. Ringwald, Fundamental physics at an x-ray free electron laser, in proceedings of Workshop on Electromagnetic Probes of Fundamental Physics, Erice, Sicily, Italy, 16–21 October 2001, pp. 63–74 [hep-ph/0112254] [INSPIRE].

  48. [48]

    G. V. Dunne, New Strong-Field QED Effects at ELI: Nonperturbative Vacuum Pair Production, Eur. Phys. J. D 55 (2009) 327 [arXiv:0812.3163] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    T. Tajima, Prospects for extreme field science, Eur. Phys. J. D 55 (2009) 519.

    ADS  Article  Google Scholar 

  50. [50]

    M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. Lond. A 392 (1984) 45 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  51. [51]

    R. White, Phase Integral Methods, (2002) and online pdf version at∼rwhite/wkb.pdf.

  52. [52]

    C. K. Dumlu and G. V. Dunne, Interference Effects in Schwinger Vacuum Pair Production for Time-Dependent Laser Pulses, Phys. Rev. D 83 (2011) 065028 [arXiv:1102.2899] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    R. Dabrowski and G. V. Dunne, Superadiabatic particle number in Schwinger and de Sitter particle production, Phys. Rev. D 90 (2014) 025021 [arXiv:1405.0302] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yohei Ema.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2101.05192

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Domcke, V., Ema, Y. & Mukaida, K. Axion assisted Schwinger effect. J. High Energ. Phys. 2021, 1 (2021).

Download citation


  • Cosmology of Theories beyond the SM
  • Nonperturbative Effects