Skip to main content

Test of lepton universality with \( {\Lambda}_b^0\to {pK}^{-}{\mathrm{\ell}}^{+}{\mathrm{\ell}}^{-} \) decays

A preprint version of the article is available at arXiv.

Abstract

The ratio of branching fractions of the decays \( {\Lambda}_b^0 \)pKe+e and \( {\Lambda}_b^0 \)pKμ+μ, \( {R}_{pK}^{-1} \), is measured for the first time using proton-proton collision data corresponding to an integrated luminosity of 4.7 fb1 recorded with the LHCb experiment at center-of-mass energies of 7, 8 and 13 TeV. In the dilepton mass-squared range 0.1 < q2 < 6.0 GeV2/c4 and the pK mass range m(pK) < 2600 MeV/c2, the ratio of branching fractions is measured to be \( {R}_{pK}^{-1}={1.17}_{-0.16}^{+0.18}\pm 0.07 \), where the first uncertainty is statistical and the second systematic. This is the first test of lepton universality with b baryons and the first observation of the decay \( {\Lambda}_b^0 \)pKe+e.

References

  1. [1]

    LHCb collaboration, Angular analysis of the B0K*0μ+μ decay using 3 fb1 of integrated luminosity, JHEP 02 (2016) 104 [LHCb-PAPER-2015-051] [arXiv:1512.04442] [INSPIRE].

  2. [2]

    Belle collaboration, Lepton-flavor-dependent angular analysis of BK*ℓ+, Phys. Rev. Lett. 118 (2017) 111801 [arXiv:1612.05014] [INSPIRE].

  3. [3]

    ATLAS collaboration, Angular analysis of \( {B}_d^0 \)K*μ+μ decays in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 10 (2018) 047 [arXiv:1805.04000] [INSPIRE].

  4. [4]

    CMS collaboration, Measurement of angular parameters from the decay B0K*0μ+μ in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 781 (2018) 517 [arXiv:1710.02846] [INSPIRE].

  5. [5]

    M. Bordone, G. Isidori and A. Pattori, On the Standard Model predictions for RK and \( {R}_{K^{\ast }} \), Eur. Phys. J. C 76 (2016) 440 [arXiv:1605.07633] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    BaBar collaboration, Measurement of branching fractions and rate asymmetries in the rare decays BK(*)+, Phys. Rev. D 86 (2012) 032012 [arXiv:1204.3933] [INSPIRE].

  7. [7]

    Belle collaboration, Measurement of the differential branching fraction and forward-backward asymmetry for BK(*)+, Phys. Rev. Lett. 103 (2009) 171801 [arXiv:0904.0770] [INSPIRE].

  8. [8]

    Belle collaboration, Test of lepton flavor universality in BK+ℓ decays at Belle, arXiv:1904.02440 [INSPIRE].

  9. [9]

    Belle collaboration, Test of lepton flavor universality in BKℓ+ decays, arXiv:1908.01848 [INSPIRE].

  10. [10]

    LHCb collaboration, Search for lepton-universality violation in B+K++ decays, Phys. Rev. Lett. 122 (2019) 191801 [LHCb-PAPER-2019-009] [arXiv:1903.09252] [INSPIRE].

  11. [11]

    LHCb collaboration, Test of lepton universality with B0K*0+ decays, JHEP 08 (2017) 055 [LHCb-PAPER-2017-013] [arXiv:1705.05802] [INSPIRE].

  12. [12]

    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of bsℓℓ anomalies, JHEP 06 (2016) 092 [arXiv:1510.04239] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    C. Bobeth, G. Hiller and G. Piranishvili, Angular distributions of \( \overline{B}\to \overline{K}\overline{\mathrm{\ell}}\mathrm{\ell} \)decays, JHEP 12 (2007) 040 [arXiv:0709.4174] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    B. Capdevila, S. Descotes-Genon, J. Matias and J. Virto, Assessing lepton-flavour non-universality from BK*ℓℓ angular analyses, JHEP 10 (2016) 075 [arXiv:1605.03156] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    B. Capdevila, S. Descotes-Genon, L. Hofer and J. Matias, Hadronic uncertainties in BK*μ+μ: a state-of-the-art analysis, JHEP 04 (2017) 016 [arXiv:1701.08672] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    N. Serra, R. Silva Coutinho and D. van Dyk, Measuring the breaking of lepton flavour universality in BK*+ , Phys. Rev. D 95 (2017) 035029 [arXiv:1610.08761] [INSPIRE].

  17. [17]

    D. van Dyk et al., EOS — A HEP program for flavor observables, https://eos.github.io/.

  18. [18]

    A. Bharucha, D.M. Straub and R. Zwicky, BVℓ+ in the Standard Model from light-cone sum rules, JHEP 08 (2016) 098 [arXiv:1503.05534] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    D.M. Straub, flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond, arXiv:1810.08132 [INSPIRE].

  20. [20]

    W. Altmannshofer, C. Niehoff, P. Stangl and D.M. Straub, Status of the BK*μ+μ anomaly after Moriond 2017, Eur. Phys. J. C 77 (2017) 377 [arXiv:1703.09189] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    S. Jäger and J. Martin Camalich, Reassessing the discovery potential of the BK+ decays in the large-recoil region: SM challenges and BSM opportunities, Phys. Rev. D 93 (2016) 014028 [arXiv:1412.3183] [INSPIRE].

  22. [22]

    LHCb collaboration, Angular moments of the decay \( {\Lambda}_b^0 \)Λμ+μ, JHEP 09 (2018) 146 [LHCb-PAPER-2018-029] [arXiv:1808.00264] [INSPIRE].

  23. [23]

    LHCb collaboration, Observation of the decay \( {\Lambda}_b^0 \)→ pKμ+μ and a search for CP violation, JHEP 06 (2017) 108 [LHCb-PAPER-2016-059] [arXiv:1703.00256] [INSPIRE].

  24. [24]

    J. Fuentes-Martín, G. Isidori, J. Pagès and K. Yamamoto, With or without U(2)? Probing non-standard flavor and helicity structures in semileptonic B decays, Phys. Lett. B 800 (2020) 135080 [arXiv:1909.02519] [INSPIRE].

  25. [25]

    G. Hiller and M. Schmaltz, Diagnosing lepton-nonuniversality in bsℓℓ, JHEP 02 (2015) 055 [arXiv:1411.4773] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    LHCb collaboration, Observation of J/ψp Resonances Consistent with Pentaquark States in \( {\Lambda}_b^0 \)J/ψKp Decays, Phys. Rev. Lett. 115 (2015) 072001 [LHCb-PAPER-2015-029] [arXiv:1507.03414] [INSPIRE].

  27. [27]

    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  28. [28]

    L. Mott and W. Roberts, Rare dileptonic decays of \( {\Lambda}_b^0 \)in a quark model, Int. J. Mod. Phys. A 27 (2012) 1250016 [arXiv:1108.6129] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    S. Descotes-Genon and M. Novoa Brunet, Angular analysis of the rare decay \( {\Lambda}_b^0 \)Λ(1520)(→ N K)+, JHEP 06 (2019) 136 [arXiv:1903.00448] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].

  31. [31]

    LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [LHCB-DP-2014-002] [arXiv:1412.6352] [INSPIRE].

  32. [32]

    V.V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, 2013 JINST 8 P02013 [arXiv:1210.6861] [INSPIRE].

  33. [33]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  34. [34]

    I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE].

  35. [35]

    D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].

  37. [37]

    J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].

  39. [39]

    L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California, U.S.A., (1984).

  40. [40]

    P.J. Huber, Robust estimation of a location parameter, Annals Math. Statist. 35 (1964) 73.

    MathSciNet  Article  Google Scholar 

  41. [41]

    A. Blum et al., Beating the hold-out: Bounds for k-fold and progressive cross-validation, in Proceedings of the Twelfth Annual Conference on Computational Learning Theory, in COLT, (1999), p. 203, DOI.

  42. [42]

    R. Aaij et al., Selection and processing of calibration samples to measure the particle identification performance of the LHCb experiment in Run 2, Eur. Phys. J. Tech. Instr. 6 (2018) 1 [LHCb-DP-2018-001] [arXiv:1803.00824] [INSPIRE].

  43. [43]

    T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances, Ph.D. Thesis, Institute of Nuclear Physics, Krakow, Poland (1986).

  44. [44]

    K.S. Cranmer, Kernel estimation in high-energy physics, Comput. Phys. Commun. 136 (2001) 198 [hep-ex/0011057] [INSPIRE].

  45. [45]

    P. Ball and R. Zwicky, Bd,sρ, ω, K*, ϕ decay form-factors from light-cone sum rules revisited, Phys. Rev. D 71 (2005) 014029 [hep-ph/0412079] [INSPIRE].

  46. [46]

    LHCb collaboration, Study of the production of \( {\Lambda}_b^0 \)and \( {\overline{B}}^0 \)hadrons in pp collisions and first measurement of the \( {\Lambda}_b^0 \)J/ψpK branching fraction, Chin. Phys. C 40 (2016) 011001 [LHCb-PAPER-2015-032] [arXiv:1509.00292] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors