The higher-order phase transition in toroidal CDT

Abstract

We investigate the transition between the phases B and Cb observed in four-dimensional Causal Dynamical Triangulations (CDT). We find that the critical properties of CDT with toroidal spatial topology are the same as earlier observed in spherical spatial topology where the B − Cb transition was found to be higher-order. This may have important consequences for the existence of the continuum limit of CDT, describing the perspective UV limit of quantum gravity, which potentially can be investigated in the toroidal model.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Poincare Phys.Theor. A 20 (1974) 69.

    ADS  MathSciNet  MATH  Google Scholar 

  2. [2]

    M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys. B 266 (1986) 709 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    S. Weinberg, General relativity, an Einstein centenary survey, Cambridge University Press, Cambridge U.K. (1997).

    Google Scholar 

  4. [4]

    M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030].

    ADS  MathSciNet  Google Scholar 

  5. [5]

    D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett. 92 (2004) 201301 [hep-th/0312114] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    M. Niedermaier and M. Reuter, The asymptotic safety scenario in quantum gravity, Living Rev. Rel. 9 (2006) 5.

    Article  Google Scholar 

  7. [7]

    A. Codello, R. Percacci and C. Rahmede, Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    D.F. Litim, Renormalisation group and the Planck scale, Phil. Trans. Roy. Soc. London A 369 (2011) 2759.

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Nonperturbative quantum gravity, Phys. Rept. 519 (2012) 127 [arXiv:1203.3591] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    R. Loll, Quantum gravity from causal dynamical triangulations: a review, Class. Quant. Grav. 37 (2020) 013002 [arXiv:1905.08669] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    T. Regge, General relativity without coordinates, Nuovo Cim. 19 (1961) 558 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    J. Ambjørn, J. Jurkiewicz and R. Loll, Dynamically triangulating Lorentzian quantum gravity, Nucl. Phys. B 610 (2001) 347 [hep-th/0105267] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    K. Binder, Finite size scaling analysis of ising model block distribution functions, Z. Phys. B 43 (1981) 119.

    ADS  Article  Google Scholar 

  15. [15]

    K. Binder, Critical properties from monte carlo coarse graining and renormalization, Phys. Rev. Lett. 47 (1981) 693 [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    K. Binder and D.W. Heermann, Monte Carlo simulation in statistical physics: an introduction, Springer, Germany (2010).

    Book  Google Scholar 

  17. [17]

    J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, A second-order phase transition in CDT, Phys. Rev. Lett. 107 (2011) 211303 [arXiv:1108.3932] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, Second- and first-order phase transitions in CDT, Phys. Rev. D 85 (2012) 124044 [arXiv:1205.1229] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    J. Ambjørn et al., Critical phenomena in causal dynamical triangulations, Class. Quant. Grav. 36 (2019) 224001 [arXiv:1904.05755] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    J. Ambjørn, J. Gizbert-Studnicki, A. Görlich and J. Jurkiewicz, The effective action in 4-dim CDT. The transfer matrix approach, JHEP 06 (2014) 034 [arXiv:1403.5940] [INSPIRE].

  21. [21]

    J. Ambjørn, D.N. Coumbe, J. Gizbert-Studnicki and J. Jurkiewicz, Signature Change of the Metric in CDT Quantum Gravity?, JHEP 08 (2015) 033 [arXiv:1503.08580] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    J. Ambjørn et al., Characteristics of the new phase in CDT, Eur. Phys. J. C 77 (2017) 152 [arXiv:1610.05245] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Planckian birth of the quantum de Sitter universe, Phys. Rev. Lett. 100 (2008) 091304 [arXiv:0712.2485] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, The nonperturbative quantum de Sitter universe, Phys. Rev. D 78 (2008) 063544 [arXiv:0807.4481] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  25. [25]

    J. Ambjørn et al., The semiclassical limit of causal dynamical triangulations, Nucl. Phys. B 849 (2011) 144 [arXiv:1102.3929] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    J. Ambjørn et al., Impact of topology in causal dynamical triangulations quantum gravity, Phys. Rev. D 94 (2016) 044010 [arXiv:1604.08786] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    J. Ambjørn et al., Four-dimensional CDT with toroidal topology, Nucl. Phys. B 922 (2017) 226 [arXiv:1705.07653] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    D.N. Coumbe, J. Gizbert-Studnicki and J. Jurkiewicz, Exploring the new phase transition of CDT, JHEP 02 (2016) 144 [arXiv:1510.08672] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    J. Ambjørn et al., New higher-order transition in causal dynamical triangulations, Phys. Rev. D 95 (2017) 124029 [arXiv:1704.04373] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    J. Ambjørn et al., The phase structure of Causal Dynamical Triangulations with toroidal spatial topology, JHEP 06 (2018) 111 [arXiv:1802.10434] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    J. Ambjørn et al., Towards an UV fixed point in CDT gravity, JHEP 07 (2019) 166 [arXiv:1906.04557] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    G. Clemente and M. D’Elia, Spectrum of the Laplace-Beltrami operator and the phase structure of causal dynamical triangulations, Phys. Rev. D 97 (2018) 124022 [arXiv:1804.02294] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. [33]

    G. Clemente, M. D’Elia and A. Ferraro, Running scales in causal dynamical triangulations, Phys. Rev. D 99 (2019) 114506 [arXiv:1903.00430] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. [34]

    J. Ambjørn et al., Renormalization Group Flow in CDT, Class. Quant. Grav. 31 (2014) 165003 [arXiv:1405.4585] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    J. Ambjørn et al., Renormalization in quantum theories of geometry, arXiv:2002.01693.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Gizbert-Studnicki.

Additional information

ArXiv ePrint: 2002.01051

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ambjørn, J., Czelusta, G., Gizbert-Studnicki, J. et al. The higher-order phase transition in toroidal CDT. J. High Energ. Phys. 2020, 30 (2020). https://doi.org/10.1007/JHEP05(2020)030

Download citation

Keywords

  • Lattice Models of Gravity
  • Lattice Quantum Field Theory
  • Models of Quantum Gravity
  • Nonperturbative Effects