Proton decay in flux compactifications

  • Wilfried Buchmuller
  • Ketan M. PatelEmail author
Open Access
Regular Article - Theoretical Physics


We study proton decay in a six-dimensional orbifold GUT model with gauge group SO(10)×U(1)A. Magnetic U(1)A flux in the compact dimensions determines the multiplicity of quark-lepton generations, and it also breaks supersymmetry by giving universal GUT scale masses to scalar quarks and leptons. The model can successfully account for quark and lepton masses and mixings. Our analysis of proton decay leads to the conclusion that the proton lifetime must be close to the current experimental lower bound. Moreover, we find that the branching ratios for the decay channels pe+π0 and pμ+π0 are of similar size, in fact the latter one can even be dominant. This is due to flavour non-diagonal couplings of heavy vector bosons together with large off-diagonal Higgs couplings, which appears to be a generic feature of flux compactifications.


Flux compactifications GUT 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.C. Pati and A. Salam, Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions, Phys. Rev. D 8 (1973) 1240 [INSPIRE].
  2. [2]
    H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Weinberg, Supersymmetry at Ordinary Energies. 1. Masses and Conservation Laws, Phys. Rev. D 26 (1982) 287 [INSPIRE].
  4. [4]
    N. Sakai and T. Yanagida, Proton Decay in a Class of Supersymmetric Grand Unified Models, Nucl. Phys. B 197 (1982) 533 [INSPIRE].
  5. [5]
    J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [INSPIRE].
  6. [6]
    G. Altarelli and F. Feruglio, SU(5) grand unification in extra dimensions and proton decay, Phys. Lett. B 511 (2001) 257 [hep-ph/0102301] [INSPIRE].
  7. [7]
    L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [INSPIRE].
  8. [8]
    A. Hebecker and J. March-Russell, A Minimal S 1/(Z 2 × Z 2) orbifold GUT, Nucl. Phys. B 613 (2001) 3 [hep-ph/0106166] [INSPIRE].
  9. [9]
    H. Georgi, The State of the ArtGauge Theories, AIP Conf. Proc. 23 (1975) 575.Google Scholar
  10. [10]
    H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S.M. Barr, A New Symmetry Breaking Pattern for SO(10) and Proton Decay, Phys. Lett. 112B (1982) 219 [INSPIRE].
  12. [12]
    J.P. Derendinger, J.E. Kim and D.V. Nanopoulos, Anti-SU(5), Phys. Lett. 139B (1984) 170 [INSPIRE].
  13. [13]
    P. Langacker, Grand Unified Theories and Proton Decay, Phys. Rept. 72 (1981) 185 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [INSPIRE].
  15. [15]
    S. Raby, Supersymmetric Grand Unified Theories: From Quarks to Strings via SUSY GUTs, Lect. Notes Phys. 939 (2017) 1 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  17. [17]
    R. Dermisek and A. Mafi, SO(10) grand unification in five-dimensions: Proton decay and the mu problem, Phys. Rev. D 65 (2002) 055002 [hep-ph/0108139] [INSPIRE].
  18. [18]
    A. Hebecker and J. March-Russell, Proton decay signatures of orbifold GUTs, Phys. Lett. B 539 (2002) 119 [hep-ph/0204037] [INSPIRE].
  19. [19]
    Q. Shafi and Z. Tavartkiladze, Neutrino democracy, fermion mass hierarchies and proton decay from 5-D SU(5), Phys. Rev. D 67 (2003) 075007 [hep-ph/0210181] [INSPIRE].
  20. [20]
    H.D. Kim and S. Raby, Unification in 5D SO(10), JHEP 01 (2003) 056 [hep-ph/0212348] [INSPIRE].
  21. [21]
    M.L. Alciati, F. Feruglio, Y. Lin and A. Varagnolo, Proton lifetime from SU(5) unification in extra dimensions, JHEP 03 (2005) 054 [hep-ph/0501086] [INSPIRE].
  22. [22]
    W. Buchmüller, L. Covi, D. Emmanuel-Costa and S. Wiesenfeldt, Flavour structure and proton decay in 6D orbifold GUTs, JHEP 09 (2004) 004 [hep-ph/0407070] [INSPIRE].
  23. [23]
    F.J. de Anda and S.F. King, SU(3) × SO(10) in 6d, JHEP 10 (2018) 128 [arXiv:1807.07078] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F.J. de Anda and S.F. King, An S 4 × SU(5) SUSY GUT of flavour in 6d, JHEP 07 (2018) 057 [arXiv:1803.04978] [INSPIRE].
  25. [25]
    W. Buchmüller, M. Dierigl, F. Ruehle and J. Schweizer, Split symmetries, Phys. Lett. B 750 (2015) 615 [arXiv:1507.06819] [INSPIRE].
  26. [26]
    C. Bachas, A Way to break supersymmetry, hep-th/9503030 [INSPIRE].
  27. [27]
    W. Buchmüller and J. Schweizer, Flavor mixings in flux compactifications, Phys. Rev. D 95 (2017) 075024 [arXiv:1701.06935] [INSPIRE].
  28. [28]
    W. Buchmüller and K.M. Patel, Flavor physics without flavor symmetries, Phys. Rev. D 97 (2018) 075019 [arXiv:1712.06862] [INSPIRE].
  29. [29]
    G. Lee and C.E.M. Wagner, Higgs bosons in heavy supersymmetry with an intermediate m A, Phys. Rev. D 92 (2015) 075032 [arXiv:1508.00576] [INSPIRE].
  30. [30]
    E. Bagnaschi, F. Brümmer, W. Buchmüller, A. Voigt and G. Weiglein, Vacuum stability and supersymmetry at high scales with two Higgs doublets, JHEP 03 (2016) 158 [arXiv:1512.07761] [INSPIRE].
  31. [31]
    V.S. Mummidi, V.P. K. and K.M. Patel, Effects of heavy neutrinos on vacuum stability in two-Higgs-doublet model with GUT scale supersymmetry, JHEP 08 (2018) 134 [arXiv:1805.08005] [INSPIRE].
  32. [32]
    V.S. Mummidi and K.M. Patel, Pseudo-Dirac Higgsino dark matter in GUT scale supersymmetry, JHEP 01 (2019) 224 [arXiv:1811.06297] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K.R. Dienes, E. Dudas and T. Gherghetta, Grand unification at intermediate mass scales through extra dimensions, Nucl. Phys. B 537 (1999) 47 [hep-ph/9806292] [INSPIRE].
  34. [34]
    S. Pokorski, K. Rolbiecki, G.G. Ross and K. Sakurai, A new approach to gauge coupling unification and proton decay, JHEP 04 (2019) 161 [arXiv:1902.06093] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.R. Ellis, D.V. Nanopoulos and J. Walker, Flipping SU(5) out of trouble, Phys. Lett. B 550 (2002) 99 [hep-ph/0205336] [INSPIRE].
  36. [36]
    Super-Kamiokande collaboration, Search for proton decay via pe + π 0 and pμ + π 0 in 0.31 megaton·years exposure of the Super-Kamiokande water Cherenkov detector, Phys. Rev. D 95 (2017) 012004 [arXiv:1610.03597] [INSPIRE].
  37. [37]
    T. Asaka, W. Buchmüller and L. Covi, Gauge unification in six-dimensions, Phys. Lett. B 523 (2001) 199 [hep-ph/0108021] [INSPIRE].
  38. [38]
    L.J. Hall, Y. Nomura, T. Okui and D. Tucker-Smith, SO(10) unified theories in six-dimensions, Phys. Rev. D 65 (2002) 035008 [hep-ph/0108071] [INSPIRE].
  39. [39]
    R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    Y. Nomura, Strongly coupled grand unification in higher dimensions, Phys. Rev. D 65 (2002) 085036 [hep-ph/0108170] [INSPIRE].
  41. [41]
    Y. Nomura, D. Tucker-Smith and N. Weiner, GUT breaking on the brane, Nucl. Phys. B 613 (2001) 147 [hep-ph/0104041] [INSPIRE].
  42. [42]
    T. Asaka, W. Buchmüller and L. Covi, Bulk and brane anomalies in six-dimensions, Nucl. Phys. B 648 (2003) 231 [hep-ph/0209144] [INSPIRE].
  43. [43]
    G. von Gersdorff, N. Irges and M. Quirós, Radiative brane mass terms in D greater than 5 orbifold gauge theories, Phys. Lett. B 551 (2003) 351 [hep-ph/0210134] [INSPIRE].
  44. [44]
    M. Claudson, M.B. Wise and L.J. Hall, Chiral Lagrangian for Deep Mine Physics, Nucl. Phys. B 195 (1982) 297 [INSPIRE].
  45. [45]
    S. Chadha and M. Daniel, Chiral Lagrangian Calculation of Nucleon Decay Modes Induced by d = 5 Supersymmetric Operators, Nucl. Phys. B 229 (1983) 105 [INSPIRE].
  46. [46]
    JLQCD collaboration, Nucleon decay matrix elements from lattice QCD, Phys. Rev. D 62 (2000) 014506 [hep-lat/9911026] [INSPIRE].
  47. [47]
    R. Alonso, H.-M. Chang, E.E. Jenkins, A.V. Manohar and B. Shotwell, Renormalization group evolution of dimension-six baryon number violating operators, Phys. Lett. B 734 (2014) 302 [arXiv:1405.0486] [INSPIRE].
  48. [48]
    Hyper-Kamiokande collaboration, Hyper-Kamiokande Design Report, arXiv:1805.04163 [INSPIRE].
  49. [49]
    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 2: The Physics Program for DUNE at LBNF, arXiv:1512.06148 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  2. 2.Physical Research Laboratory, NavarangpuraAhmedabadIndia

Personalised recommendations