Strong gravitational radiation from a simple dark matter model

  • Iason BaldesEmail author
  • Camilo Garcia-Cely
Open Access
Regular Article - Theoretical Physics


A rather minimal possibility is that dark matter consists of the gauge bosons of a spontaneously broken symmetry. Here we explore the possibility of detecting the gravitational waves produced by the phase transition associated with such breaking. Concretely, we focus on the scenario based on an SU(2)D group and argue that it is a case study for the sensitivity of future gravitational wave observatories to phase transitions associated with dark matter. This is because there are few parameters and those fixing the relic density also determine the effective potential establishing the strength of the phase transition. Particularly promising for LISA and even the Einstein Telescope is the super-cool dark matter regime, with DM masses above \( \mathcal{O} \)(100) TeV, for which we find that the gravitational wave signal is notably strong. In our analysis, we include the effect of astrophysical foregrounds, which are often ignored in the context of phase transitions.


Cosmology of Theories beyond the SM Thermal Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  2. [2]
    F. Kahlhoefer, Review of LHC dark matter searches, Int. J. Mod. Phys. A 32 (2017) 1730006 [arXiv:1702.02430] [INSPIRE].
  3. [3]
    J.M. Gaskins, A review of indirect searches for particle dark matter, Contemp. Phys. 57 (2016) 496 [arXiv:1604.00014] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Marrodán Undagoitia and L. Rauch, Dark matter direct-detection experiments, J. Phys. G 43 (2016) 013001 [arXiv:1509.08767] [INSPIRE].
  5. [5]
    E. Witten, Cosmic separation of phases, Phys. Rev. D 30 (1984) 272 [INSPIRE].
  6. [6]
    C.J. Hogan, Gravitational radiation from cosmological phase transitions, Mon. Not. Roy. Astron. Soc. 218 (1986) 629 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C. Grojean and G. Servant, Gravitational waves from phase transitions at the electroweak scale and beyond, Phys. Rev. D 75 (2007) 043507 [hep-ph/0607107] [INSPIRE].
  8. [8]
    C. Caprini et al., Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].
  9. [9]
    P. Schwaller, Gravitational waves from a dark phase transition, Phys. Rev. Lett. 115 (2015) 181101 [arXiv:1504.07263] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    I. Baldes, Gravitational waves from the asymmetric-dark-matter generating phase transition, JCAP 05 (2017) 028 [arXiv:1702.02117] [INSPIRE].ADSGoogle Scholar
  11. [11]
    W. Chao, H.-K. Guo and J. Shu, Gravitational wave signals of electroweak phase transition triggered by dark matter, JCAP 09 (2017) 009 [arXiv:1702.02698] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Croon, V. Sanz and G. White, Model discrimination in gravitational wave spectra from dark phase transitions, JHEP 08 (2018) 203 [arXiv:1806.02332] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  14. [14]
    T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].
  16. [16]
    O. Catà and A. Ibarra, Dark matter stability without new symmetries, Phys. Rev. D 90 (2014) 063509 [arXiv:1404.0432] [INSPIRE].
  17. [17]
    G. Arcadi, C. Gross, O. Lebedev, Y. Mambrini, S. Pokorski and T. Toma, Multicomponent dark matter from gauge symmetry, JHEP 12 (2016) 081 [arXiv:1611.00365] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for thermal relic dark matter of strongly interacting massive particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].
  19. [19]
    T. Hambye, A. Strumia and D. Teresi, Super-cool dark matter, JHEP 08 (2018) 188 [arXiv:1805.01473] [INSPIRE].
  20. [20]
    T. Hambye and A. Strumia, Dynamical generation of the weak and dark matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].
  21. [21]
    C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].
  22. [22]
    A. Karam and K. Tamvakis, Dark matter and neutrino masses from a scale-invariant multi-Higgs portal, Phys. Rev. D 92 (2015) 075010 [arXiv:1508.03031] [INSPIRE].
  23. [23]
    L. Chataignier, T. Prokopec, M.G. Schmidt and B. SwieŻewska, Systematic analysis of radiative symmetry breaking in models with extended scalar sector, JHEP 08 (2018) 083 [arXiv:1805.09292] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    E. Thrane and J.D. Romano, Sensitivity curves for searches for gravitational-wave backgrounds, Phys. Rev. D 88 (2013) 124032 [arXiv:1310.5300] [INSPIRE].
  25. [25]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  26. [26]
    K. Cheung, J.S. Lee and P.-Y. Tseng, New emerging results in Higgs precision analysis updates 2018 after establishment of third-generation Yukawa couplings, arXiv:1810.02521 [INSPIRE].
  27. [27]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].
  28. [28]
    E. Gildener and S. Weinberg, Symmetry breaking and scalar bosons, Phys. Rev. D 13 (1976) 3333 [INSPIRE].
  29. [29]
    L. Chataignier, T. Prokopec, M.G. Schmidt and B. Swiezewska, Single-scale renormalisation group improvement of multi-scale effective potentials, JHEP 03 (2018) 014 [arXiv:1801.05258] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye and B. Zaldivar, Production regimes for self-interacting dark matter, JCAP 03 (2016) 018 [arXiv:1510.08063] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    XENON collaboration, First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  32. [32]
    B.J. Mount et al., LUX-ZEPLIN (LZ) technical design report, arXiv:1703.09144 [INSPIRE].
  33. [33]
    PandaX-II collaboration, Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  34. [34]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  35. [35]
    XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  36. [36]
    LZ collaboration, LUX-ZEPLIN (LZ) conceptual design report, arXiv:1509.02910 [INSPIRE].
  37. [37]
    DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  38. [38]
    J.M. Moreno, M. Quirós and M. Seco, Bubbles in the supersymmetric Standard Model, Nucl. Phys. B 526 (1998) 489 [hep-ph/9801272] [INSPIRE].
  39. [39]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Gravitational waves from the sound of a first order phase transition, Phys. Rev. Lett. 112 (2014) 041301 [arXiv:1304.2433] [INSPIRE].
  40. [40]
    D. Bödeker and G.D. Moore, Can electroweak bubble walls run away?, JCAP 05 (2009) 009 [arXiv:0903.4099] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    D. Bödeker and G.D. Moore, Electroweak bubble wall speed limit, JCAP 05 (2017) 025 [arXiv:1703.08215] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  42. [42]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Numerical simulations of acoustically generated gravitational waves at a first order phase transition, Phys. Rev. D 92 (2015) 123009 [arXiv:1504.03291] [INSPIRE].
  43. [43]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Shape of the acoustic gravitational wave power spectrum from a first order phase transition, Phys. Rev. D 96 (2017) 103520 [arXiv:1704.05871] [INSPIRE].
  44. [44]
    C. Caprini, R. Durrer and G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, JCAP 12 (2009) 024 [arXiv:0909.0622] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    P. Binetruy, A. Bohe, C. Caprini and J.-F. Dufaux, Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources, JCAP 06 (2012) 027 [arXiv:1201.0983] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Kosowsky, M.S. Turner and R. Watkins, Gravitational radiation from colliding vacuum bubbles, Phys. Rev. D 45 (1992) 4514 [INSPIRE].
  47. [47]
    A. Kosowsky, M.S. Turner and R. Watkins, Gravitational waves from first order cosmological phase transitions, Phys. Rev. Lett. 69 (1992) 2026 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Kosowsky and M.S. Turner, Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions, Phys. Rev. D 47 (1993) 4372 [astro-ph/9211004] [INSPIRE].
  49. [49]
    M. Kamionkowski, A. Kosowsky and M.S. Turner, Gravitational radiation from first order phase transitions, Phys. Rev. D 49 (1994) 2837 [astro-ph/9310044] [INSPIRE].
  50. [50]
    C. Caprini, R. Durrer and G. Servant, Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach, Phys. Rev. D 77 (2008) 124015 [arXiv:0711.2593] [INSPIRE].
  51. [51]
    S.J. Huber and T. Konstandin, Gravitational wave production by collisions: more bubbles, JCAP 09 (2008) 022 [arXiv:0806.1828] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Punturo et al., The Einstein telescope: a third-generation gravitational wave observatory, Class. Quant. Grav. 27 (2010) 194002 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Hild et al., Sensitivity studies for third-generation gravitational wave observatories, Class. Quant. Grav. 28 (2011) 094013 [arXiv:1012.0908] [INSPIRE].
  54. [54]
    T. Regimbau, The astrophysical gravitational wave stochastic background, Res. Astron. Astrophys. 11 (2011) 369 [arXiv:1101.2762] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    Y. Cui, M. Lewicki, D.E. Morrissey and J.D. Wells, Probing the pre-BBN universe with gravitational waves from cosmic strings, JHEP 01 (2019) 081 [arXiv:1808.08968] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    A.J. Farmer and E.S. Phinney, The gravitational wave background from cosmological compact binaries, Mon. Not. Roy. Astron. Soc. 346 (2003) 1197 [astro-ph/0304393] [INSPIRE].
  57. [57]
    P.A. Rosado, Gravitational wave background from binary systems, Phys. Rev. D 84 (2011) 084004 [arXiv:1106.5795] [INSPIRE].
  58. [58]
    D.I. Kosenko and K.A. Postnov, On the gravitational wave noise from unresolved extragalactic binaries, Astron. Astrophys. 336 (1998) 786 [astro-ph/9801032] [INSPIRE].
  59. [59]
    G. Nelemans, L.R. Yungelson and S.F. Portegies Zwart, The gravitational wave signal from the galactic disk population of binaries containing two compact objects, Astron. Astrophys. 375 (2001) 890 [astro-ph/0105221] [INSPIRE].
  60. [60]
    A.J. Ruiter, K. Belczynski, M. Benacquista, S.L. Larson and G. Williams, The LISA gravitational wave foreground: a study of double white dwarfs, Astrophys. J. 717 (2010) 1006 [arXiv:0705.3272] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M.R. Adams and N.J. Cornish, Discriminating between a stochastic gravitational wave background and instrument noise, Phys. Rev. D 82 (2010) 022002 [arXiv:1002.1291] [INSPIRE].
  62. [62]
    M.R. Adams and N.J. Cornish, Detecting a stochastic gravitational wave background in the presence of a galactic foreground and instrument noise, Phys. Rev. D 89 (2014) 022001 [arXiv:1307.4116] [INSPIRE].
  63. [63]
    C. Cutler and J. Harms, BBO and the neutron-star-binary subtraction problem, Phys. Rev. D 73 (2006) 042001 [gr-qc/0511092] [INSPIRE].
  64. [64]
    LIGO Scientific and Virgo collaborations, GW170817: implications for the stochastic gravitational-wave background from compact binary coalescences, Phys. Rev. Lett. 120 (2018) 091101 [arXiv:1710.05837] [INSPIRE].
  65. [65]
    E. Witten, Cosmological consequences of a light Higgs boson, Nucl. Phys. B 177 (1981) 477 [INSPIRE].
  66. [66]
    A.H. Guth and E.J. Weinberg, A cosmological lower bound on the Higgs boson mass, Phys. Rev. Lett. 45 (1980) 1131 [INSPIRE].
  67. [67]
    W. Buchmüller and D. Wyler, The effect of dilatons on the electroweak phase transition, Phys. Lett. B 249 (1990) 281 [INSPIRE].
  68. [68]
    V.A. Kuzmin, M.E. Shaposhnikov and I.I. Tkachev, Strong CP-violation, electroweak baryogenesis and axionic dark matter, Phys. Rev. D 45 (1992) 466 [INSPIRE].
  69. [69]
    J.R. Espinosa, T. Konstandin, J.M. No and M. Quirós, Some cosmological implications of hidden sectors, Phys. Rev. D 78 (2008) 123528 [arXiv:0809.3215] [INSPIRE].
  70. [70]
    T. Konstandin and G. Servant, Cosmological consequences of nearly conformal dynamics at the TeV scale, JCAP 12 (2011) 009 [arXiv:1104.4791] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    D. Spolyar, SuperCool inflation: a graceful exit from eternal inflation at LHC scales and below, arXiv:1111.3629 [INSPIRE].
  72. [72]
    G.C. Dorsch, S.J. Huber and J.M. No, Cosmological signatures of a UV-conformal Standard Model, Phys. Rev. Lett. 113 (2014) 121801 [arXiv:1403.5583] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    J. Jaeckel, V.V. Khoze and M. Spannowsky, Hearing the signal of dark sectors with gravitational wave detectors, Phys. Rev. D 94 (2016) 103519 [arXiv:1602.03901] [INSPIRE].
  74. [74]
    R. Jinno and M. Takimoto, Probing a classically conformal B-L model with gravitational waves, Phys. Rev. D 95 (2017) 015020 [arXiv:1604.05035] [INSPIRE].
  75. [75]
    J. Kubo and M. Yamada, Scale genesis and gravitational wave in a classically scale invariant extension of the Standard Model, JCAP 12 (2016) 001 [arXiv:1610.02241] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    A. Kobakhidze, C. Lagger, A. Manning and J. Yue, Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays, Eur. Phys. J. C 77 (2017) 570 [arXiv:1703.06552] [INSPIRE].
  77. [77]
    K. Tsumura, M. Yamada and Y. Yamaguchi, Gravitational wave from dark sector with dark pion, JCAP 07 (2017) 044 [arXiv:1704.00219] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    L. Marzola, A. Racioppi and V. Vaskonen, Phase transition and gravitational wave phenomenology of scalar conformal extensions of the Standard Model, Eur. Phys. J. C 77 (2017) 484 [arXiv:1704.01034] [INSPIRE].
  79. [79]
    S. Iso, P.D. Serpico and K. Shimada, QCD-electroweak first-order phase transition in a supercooled universe, Phys. Rev. Lett. 119 (2017) 141301 [arXiv:1704.04955] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Aoki, H. Goto and J. Kubo, Gravitational waves from hidden QCD phase transition, Phys. Rev. D 96 (2017) 075045 [arXiv:1709.07572] [INSPIRE].
  81. [81]
    S. ArunaSalam, A. Kobakhidze, C. Lagger, S. Liang and A. Zhou, Low temperature electroweak phase transition in the Standard Model with hidden scale invariance, Phys. Lett. B 776 (2018) 48 [arXiv:1709.10322] [INSPIRE].
  82. [82]
    B. von Harling and G. Servant, QCD-induced electroweak phase transition, JHEP 01 (2018) 159 [arXiv:1711.11554] [INSPIRE].
  83. [83]
    D. Huang and B.-Q. Lu, Comment onhearing the signal of dark sectors with gravitational wave detectors”, Phys. Rev. D 97 (2018) 068303 [arXiv:1803.03180] [INSPIRE].
  84. [84]
    K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    I. Baldes and K. Petraki, Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds, JCAP 09 (2017) 028 [arXiv:1703.00478] [INSPIRE].ADSGoogle Scholar
  86. [86]
    H.L. Child and J.T. Giblin, Jr., Gravitational radiation from first-order phase transitions, JCAP 10 (2012) 001 [arXiv:1207.6408] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    T. Prokopec, J. Rezacek and B. SwieŻewska, Gravitational waves from conformal symmetry breaking, JCAP 02 (2019) 009 [arXiv:1809.11129] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    J. Elias-Miro, J.R. Espinosa and T. Konstandin, Taming infrared divergences in the effective potential, JHEP 08 (2014) 034 [arXiv:1406.2652] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    M.E. Carrington, The effective potential at finite temperature in the Standard Model, Phys. Rev. D 45 (1992) 2933 [INSPIRE].
  90. [90]
    J.R. Espinosa, T. Konstandin, J.M. No and G. Servant, Energy budget of cosmological first-order phase transitions, JCAP 06 (2010) 028 [arXiv:1004.4187] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    J. Ellis, M. Lewicki and J.M. No, On the maximal strength of a first-order electroweak phase transition and its gravitational wave signal, arXiv:1809.08242 [INSPIRE].
  92. [92]
    R.D. Pisarski and F. Wilczek, Remarks on the chiral phase transition in chromodynamics, Phys. Rev. D 29 (1984) 338 [INSPIRE].
  93. [93]
    F.R. Brown et al., On the existence of a phase transition for QCD with three light quarks, Phys. Rev. Lett. 65 (1990) 2491 [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    A.H. Guth and S.H.H. Tye, Phase transitions and magnetic monopole production in the very early universe, Phys. Rev. Lett. 44 (1980) 631 [Erratum ibid. 44 (1980) 963] [INSPIRE].
  95. [95]
    A.H. Guth and E.J. Weinberg, Cosmological consequences of a first order phase transition in the SU(5) grand unified model, Phys. Rev. D 23 (1981) 876 [INSPIRE].
  96. [96]
    A.H. Guth and E.J. Weinberg, Could the universe have recovered from a slow first order phase transition?, Nucl. Phys. B 212 (1983) 321 [INSPIRE].
  97. [97]
    K. Enqvist, J. Ignatius, K. Kajantie and K. Rummukainen, Nucleation and bubble growth in a first order cosmological electroweak phase transition, Phys. Rev. D 45 (1992) 3415 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.DESYHamburgGermany

Personalised recommendations