Lattice study of static quark-antiquark interactions in dense quark matter

Abstract

In this paper we study the interactions among a static quark-antiquark pair in the presence of dense two-color quark matter with lattice simulation. To this end we compute Polyakov line correlation functions and determine the renormalized color averaged, color singlet and color triplet grand potentials. The color singlet grand potential allows us to elucidate the number of quarks induced by a static quark antiquark source, as well as the internal energy of such a pair in dense quark matter. We furthermore determine the screening length, which in the confinement phase is synonymous with the string breaking distance. The screening length is a decreasing function of baryon density, due to the possibility to break the interquark string via a scalar diquark condensate at high density. We also study the large distance properties of the color singlet grand potential i a dense medium and find that it is well described by a simple Debye screening formula, parameterized by a Debye mass and an effective coupling constant. The latter is of order of unity, i.e. even at large density two-color quark matter is a strongly correlated system.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Borsányi, Frontiers of finite temperature lattice QCD, EPJ Web Conf. 137 (2017) 01006 [arXiv:1612.06755] [INSPIRE].

  2. [2]

    M. D’Elia, Lattice QCD in background fields, J. Phys. Conf. Ser. 432 (2013) 012004 [INSPIRE].

  3. [3]

    B.B. Brandt, G. Endrodi and S. Schmalzbauer, QCD phase diagram for nonzero isospin-asymmetry, Phys. Rev. D 97 (2018) 054514 [arXiv:1712.08190] [INSPIRE].

  4. [4]

    P. Scior, L. von Smekal and D. Smith, Spectrum of QCD at finite isospin density, EPJ Web Conf. 175 (2018) 07042 [arXiv:1710.06314] [INSPIRE].

  5. [5]

    V.V. Braguta et al., Two-color QCD with non-zero chiral chemical potential, JHEP 06 (2015) 094 [arXiv:1503.06670] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    V.V. Braguta et al., Study of QCD phase diagram with non-zero chiral chemical potential, Phys. Rev. D 93 (2016) 034509 [arXiv:1512.05873] [INSPIRE].

  7. [7]

    V.V. Braguta and A.Yu. Kotov, Catalysis of dynamical chiral symmetry breaking by chiral chemical potential, Phys. Rev. D 93 (2016) 105025 [arXiv:1601.04957] [INSPIRE].

  8. [8]

    O. Kaczmarek, F. Karsch, P. Petreczky and F. Zantow, Heavy quark anti-quark free energy and the renormalized Polyakov loop, Phys. Lett. B 543 (2002) 41 [hep-lat/0207002] [INSPIRE].

  9. [9]

    O. Kaczmarek, F. Karsch, F. Zantow and P. Petreczky, Static quark anti-quark free energy and the running coupling at finite temperature, Phys. Rev. D 70 (2004) 074505 [Erratum ibid. D 72 (2005) 059903] [hep-lat/0406036] [INSPIRE].

  10. [10]

    O. Kaczmarek and F. Zantow, Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding, Phys. Rev. D 71 (2005) 114510 [hep-lat/0503017] [INSPIRE].

  11. [11]

    O. Kaczmarek and F. Zantow, Static quark anti-quark interactions at zero and finite temperature QCD. II. Quark anti-quark internal energy and entropy, hep-lat/0506019 [INSPIRE].

  12. [12]

    WHOT-QCD collaboration, Electric and magnetic screening masses at finite temperature from generalized Polyakov-line correlations in two-flavor lattice QCD, Phys. Rev. D 81 (2010) 091501 [arXiv:1003.1361] [INSPIRE].

  13. [13]

    Y. Maezawa et al., Application of fixed scale approach to static quark free energies in quenched and 2 + 1 flavor lattice QCD with improved Wilson quark action, Prog. Theor. Phys. 128 (2012) 955 [arXiv:1112.2756] [INSPIRE].

  14. [14]

    TUMQCD collaboration, Color screening in (2 + 1)-flavor QCD, Phys. Rev. D 98 (2018) 054511 [arXiv:1804.10600] [INSPIRE].

  15. [15]

    C.S. Fischer, L. Fister, J. Luecker and J.M. Pawlowski, Polyakov loop potential at finite density, Phys. Lett. B 732 (2014) 273 [arXiv:1306.6022] [INSPIRE].

  16. [16]

    N.O. Agasian, M.S. Lukashov and Yu.A. Simonov, Nonperturbative SU(3) thermodynamics and the phase transition, Eur. Phys. J. A 53 (2017) 138 [arXiv:1701.07959] [INSPIRE].

  17. [17]

    A. Bazavov et al., The QCD equation of state to \( \mathcal{O}\left({\mu}_B^6\right) \) from lattice QCD, Phys. Rev. D 95 (2017) 054504 [arXiv:1701.04325] [INSPIRE].

  18. [18]

    J.N. Guenther et al., The QCD equation of state at finite density from analytical continuation, Nucl. Phys. A 967 (2017) 720 [arXiv:1607.02493] [INSPIRE].

  19. [19]

    M. D’Elia, G. Gagliardi and F. Sanfilippo, Higher order quark number fluctuations via imaginary chemical potentials in N f = 2 + 1 QCD, Phys. Rev. D 95 (2017) 094503 [arXiv:1611.08285] [INSPIRE].

  20. [20]

    M. Buballa, NJLS model analysis of quark matter at large density, Phys. Rept. 407 (2005) 205 [hep-ph/0402234] [INSPIRE].

  21. [21]

    M.G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    M.A. Andreichikov, M.S. Lukashov and Yu.A. Simonov, Nonperturbative quark-gluon thermodynamics at finite density, Int. J. Mod. Phys. A 33 (2018) 1850043 [arXiv:1707.04631] [INSPIRE].

  23. [23]

    J.B. Kogut, M.A. Stephanov and D. Toublan, On two color QCD with baryon chemical potential, Phys. Lett. B 464 (1999) 183 [hep-ph/9906346] [INSPIRE].

  24. [24]

    J.B. Kogut et al., QCD - like theories at finite baryon density, Nucl. Phys. B 582 (2000) 477 [hep-ph/0001171] [INSPIRE].

  25. [25]

    D.T. Son and M.A. Stephanov, QCD at finite isospin density, Phys. Rev. Lett. 86 (2001) 592 [hep-ph/0005225] [INSPIRE].

  26. [26]

    K. Splittorff, D.T. Son and M.A. Stephanov, QCD-like theories at finite baryon and isospin density, Phys. Rev. D 64 (2001) 016003 [hep-ph/0012274] [INSPIRE].

  27. [27]

    O. Janssen et al., Phase diagram of dynamical twisted mass Wilson fermions at finite isospin chemical potential, Phys. Rev. D 93 (2016) 094502 [arXiv:1509.02760] [INSPIRE].

  28. [28]

    S. Hands, J.B. Kogut, M.-P. Lombardo and S.E. Morrison, Symmetries and spectrum of SU(2) lattice gauge theory at finite chemical potential, Nucl. Phys. B 558 (1999) 327 [hep-lat/9902034] [INSPIRE].

  29. [29]

    S. Muroya, A. Nakamura and C. Nonaka, Behavior of hadrons at finite density: lattice study of color SU(2) QCD, Phys. Lett. B 551 (2003) 305 [hep-lat/0211010] [INSPIRE].

  30. [30]

    J.B. Kogut, D. Toublan and D.K. Sinclair, The phase diagram of four flavor SU(2) lattice gauge theory at nonzero chemical potential and temperature, Nucl. Phys. B 642 (2002) 181 [hep-lat/0205019] [INSPIRE].

  31. [31]

    S. Cotter, P. Giudice, S. Hands and J.-I. Skullerud, Towards the phase diagram of dense two-color matter, Phys. Rev. D 87 (2013) 034507 [arXiv:1210.4496] [INSPIRE].

  32. [32]

    V.V. Braguta et al., Study of the phase diagram of dense two-color QCD within lattice simulation, Phys. Rev. D 94 (2016) 114510 [arXiv:1605.04090] [INSPIRE].

  33. [33]

    L. Holicki et al., Two-colour QCD at finite density with two flavours of staggered quarks, PoS LATTICE2016 (2017) 052 [arXiv:1701.04664] [INSPIRE].

  34. [34]

    V.G. Bornyakov et al., Observation of deconfinement in a cold dense quark medium, JHEP 03 (2018) 161 [arXiv:1711.01869] [INSPIRE].

    Article  Google Scholar 

  35. [35]

    P. Weisz, Continuum limit improved lattice action for pure Yang-Mills theory. 1., Nucl. Phys. B 212 (1983) 1 [INSPIRE].

  36. [36]

    G. Curci, P. Menotti and G. Paffuti, Symanziks improved Lagrangian for lattice gauge theory, Phys. Lett. B 130 (1983) 205.

  37. [37]

    P. Hasenfratz and F. Karsch, Chemical potential on the lattice, Phys. Lett. B 125 (1983) 308.

  38. [38]

    J.B. Kogut, D.K. Sinclair, S.J. Hands and S.E. Morrison, Two color QCD at nonzero quark number density, Phys. Rev. D 64 (2001) 094505 [hep-lat/0105026] [INSPIRE].

  39. [39]

    J.B. Kogut, D. Toublan and D.K. Sinclair, Diquark condensation at nonzero chemical potential and temperature, Phys. Lett. B 514 (2001) 77 [hep-lat/0104010] [INSPIRE].

  40. [40]

    A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].

  41. [41]

    A. Hasenfratz and F. Knechtli, Flavor symmetry and the static potential with hypercubic blocking, Phys. Rev. D 64 (2001) 034504 [hep-lat/0103029] [INSPIRE].

  42. [42]

    M. Della Morte, A. Shindler and R. Sommer, On lattice actions for static quarks, JHEP 08 (2005) 051 [hep-lat/0506008] [INSPIRE].

  43. [43]

    APE collaboration, Glueball Masses and String Tension in Lattice QCD, Phys. Lett. B 192 (1987) 163 [INSPIRE].

  44. [44]

    C. Bonati et al., Screening masses in strong external magnetic fields, Phys. Rev. D 95 (2017) 074515 [arXiv:1703.00842] [INSPIRE].

  45. [45]

    C. Bonati et al., Anisotropy of the quark-antiquark potential in a magnetic field, Phys. Rev. D 89 (2014) 114502 [arXiv:1403.6094] [INSPIRE].

  46. [46]

    T. Boz et al., Two-color QCD at high density, AIP Conf. Proc. 1701 (2016) 060019 [arXiv:1502.01219] [INSPIRE].

  47. [47]

    S. Hands, S. Kim and J.-I. Skullerud, Deconfinement in dense 2-color QCD, Eur. Phys. J. C 48 (2006) 193 [hep-lat/0604004] [INSPIRE].

  48. [48]

    S. Hands, S. Kim and J.-I. Skullerud, A quarkyonic phase in dense two color matter?, Phys. Rev. D 81 (2010) 091502 [arXiv:1001.1682] [INSPIRE].

  49. [49]

    D.T. Son, Superconductivity by long range color magnetic interaction in high density quark matter, Phys. Rev. D 59 (1999) 094019 [hep-ph/9812287] [INSPIRE].

  50. [50]

    S. Nadkarni, Nonabelian Debye screening. 1. The color averaged potential, Phys. Rev. D 33 (1986) 3738 [INSPIRE].

  51. [51]

    T. Boz et al., Phase transitions and gluodynamics in 2-colour matter at high density, Eur. Phys. J. A 49 (2013) 87 [arXiv:1303.3223] [INSPIRE].

  52. [52]

    R. Sommer, A new way to set the energy scale in lattice gauge theories and its applications to the static force and α s in SU(2) Yang-Mills theory, Nucl. Phys. B 411 (1994) 839 [hep-lat/9310022] [INSPIRE].

  53. [53]

    E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane and T.-M. Yan, Charmonium: The Model, Phys. Rev. D 17 (1978) 3090 [Erratum ibid. D 21 (1980) 313] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Nikolaev.

Additional information

ArXiv ePrint: 1808.06466

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Astrakhantsev, N.Y., Bornyakov, V.G., Braguta, V.V. et al. Lattice study of static quark-antiquark interactions in dense quark matter. J. High Energ. Phys. 2019, 171 (2019). https://doi.org/10.1007/JHEP05(2019)171

Download citation

Keywords

  • Lattice QCD
  • Phase Diagram of QCD
  • Quark-Gluon Plasma