Advertisement

Black hole microstate counting in Type IIB from 5d SCFTs

  • Martin Fluder
  • Seyed Morteza HosseiniEmail author
  • Christoph F. Uhlemann
Open Access
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract

We use recently established AdS6/CFT5 dualities to count the microstates of magnetically charged AdS6 × S2 × Σ black holes in Type IIB. The near-horizon limit is described by solutions with AdS2 × \( {\varSigma}_{{\mathfrak{g}}_1} \) × \( {\varSigma}_{{\mathfrak{g}}_2} \) × S2 × Σ geometry, where \( {\varSigma}_{{\mathfrak{g}}_i} \) are Riemann surfaces of constant curvature and Σ is a further Riemann surface over which the geometry is warped. Our results show that the topologically twisted indices of the proposed dual superconformal field theories precisely reproduce the Bekenstein-Hawking entropy of this class of black holes. This provides further support for a prescription to compute fivedimensional topologically twisted indices put forth recently, and for the proposed dualities. We confirm the N4 scaling found in the sphere partition functions and extend previous matches of sphere partition functions to AdS6 solutions with monodromy.

Keywords

AdS-CFT Correspondence Black Holes in String Theory Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  2. [2]
    F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc. Symp. Pure Math. 96 (2017) 13 [arXiv:1605.06120] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  3. [3]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].ADSzbMATHGoogle Scholar
  5. [5]
    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4 from supersymmetric localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].ADSzbMATHGoogle Scholar
  6. [6]
    F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in AdS4, Phys. Lett. B 771 (2017) 462 [arXiv:1608.07294] [INSPIRE].ADSzbMATHGoogle Scholar
  7. [7]
    S.M. Hosseini and A. Zaffaroni, Large N matrix models for 3d \( \mathcal{N} \) = 2 theories: twisted index, free energy and black holes, JHEP 08 (2016) 064 [arXiv:1604.03122] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    S.M. Hosseini and N. Mekareeya, Large N topologically twisted index: necklace quivers, dualities and Sasaki-Einstein spaces, JHEP 08 (2016) 089 [arXiv:1604.03397] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    S.M. Hosseini, A. Nedelin and A. Zaffaroni, The Cardy limit of the topologically twisted index and black strings in AdS 5, JHEP 04 (2017) 014 [arXiv:1611.09374] [INSPIRE].ADSzbMATHGoogle Scholar
  10. [10]
    S.M. Hosseini, Black hole microstates and supersymmetric localization, Ph.D. Thesis, Milan Bicocca U. (2018) [arXiv:1803.01863] [INSPIRE].
  11. [11]
    J. Hong and J.T. Liu, The topologically twisted index of \( \mathcal{N} \) = 4 super-Yang-Mills on T 2 × S 2 and the elliptic genus, JHEP 07 (2018) 018 [arXiv:1804.04592] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Cabo-Bizet, V.I. Giraldo-Rivera and L.A. Pando Zayas, Microstate counting of AdS 4 hyperbolic black hole entropy via the topologically twisted index, JHEP 08 (2017) 023 [arXiv:1701.07893] [INSPIRE].ADSzbMATHGoogle Scholar
  13. [13]
    F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min and A. Zaffaroni, A universal counting of black hole microstates in AdS 4, JHEP 02 (2018) 054 [arXiv:1707.04257] [INSPIRE].ADSzbMATHGoogle Scholar
  14. [14]
    S.M. Hosseini, K. Hristov and A. Passias, Holographic microstate counting for AdS 4 black holes in massive IIA supergravity, JHEP 10 (2017) 190 [arXiv:1707.06884] [INSPIRE].ADSzbMATHGoogle Scholar
  15. [15]
    F. Benini, H. Khachatryan and P. Milan, Black hole entropy in massive Type IIA, Class. Quant. Grav. 35 (2018) 035004 [arXiv:1707.06886] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    N. Bobev, V.S. Min and K. Pilch, Mass-deformed ABJM and black holes in AdS 4, JHEP 03 (2018) 050 [arXiv:1801.03135] [INSPIRE].ADSzbMATHGoogle Scholar
  17. [17]
    C. Toldo and B. Willett, Partition functions on 3d circle bundles and their gravity duals, JHEP 05 (2018) 116 [arXiv:1712.08861] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    D. Gang and N. Kim, Large N twisted partition functions in 3d-3d correspondence and Holography, Phys. Rev. D 99 (2019) 021901 [arXiv:1808.02797] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J.T. Liu, L.A. Pando Zayas, V. Rathee and W. Zhao, One-Loop Test of Quantum Black Holes in anti-de Sitter Space, Phys. Rev. Lett. 120 (2018) 221602 [arXiv:1711.01076] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J.T. Liu, L.A. Pando Zayas, V. Rathee and W. Zhao, Toward Microstate Counting Beyond Large N in Localization and the Dual One-loop Quantum Supergravity, JHEP 01 (2018) 026 [arXiv:1707.04197] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    I. Jeon and S. Lal, Logarithmic Corrections to Entropy of Magnetically Charged AdS4 Black Holes, Phys. Lett. B 774 (2017) 41 [arXiv:1707.04208] [INSPIRE].ADSzbMATHGoogle Scholar
  22. [22]
    N. Halmagyi and S. Lal, On the on-shell: the action of AdS 4 black holes, JHEP 03 (2018) 146 [arXiv:1710.09580] [INSPIRE].ADSzbMATHGoogle Scholar
  23. [23]
    A. Cabo-Bizet, U. Kol, L.A. Pando Zayas, I. Papadimitriou and V. Rathee, Entropy functional and the holographic attractor mechanism, JHEP 05 (2018) 155 [arXiv:1712.01849] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    K. Hristov, I. Lodato and V. Reys, On the quantum entropy function in 4d gauged supergravity, JHEP 07 (2018) 072 [arXiv:1803.05920] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  25. [25]
    J. Nian and X. Zhang, Entanglement Entropy of ABJM Theory and Entropy of Topological Black Hole, JHEP 07 (2017) 096 [arXiv:1705.01896] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    J.T. Liu, L.A. Pando Zayas and S. Zhou, Subleading Microstate Counting in the Dual to Massive Type IIA, arXiv:1808.10445 [INSPIRE].
  27. [27]
    S.M. Hosseini, I. Yaakov and A. Zaffaroni, Topologically twisted indices in five dimensions and holography, JHEP 11 (2018) 119 [arXiv:1808.06626] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    M. Suh, Supersymmetric AdS 6 black holes from F(4) gauged supergravity, JHEP 01 (2019) 035 [arXiv:1809.03517] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S.M. Hosseini, K. Hristov, A. Passias and A. Zaffaroni, 6D attractors and black hole microstates, arXiv:1809.10685 [INSPIRE].
  30. [30]
    P.M. Crichigno, D. Jain and B. Willett, 5d Partition Functions with A Twist, JHEP 11 (2018) 058 [arXiv:1808.06744] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    L.J. Romans, The F(4) Gauged Supergravity in Six-dimensions, Nucl. Phys. B 269 (1986) 691 [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    M. Suh, On-shell action and the Bekenstein-Hawking entropy of supersymmetric black holes in AdS 6, arXiv:1812.10491 [INSPIRE].
  33. [33]
    N. Bobev and P.M. Crichigno, Universal RG Flows Across Dimensions and Holography, JHEP 12 (2017) 065 [arXiv:1708.05052] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  34. [34]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  35. [35]
    B. Kol, 5-D field theories and M-theory, JHEP 11 (1999) 026 [hep-th/9705031] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  38. [38]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Theisen and S. Yankielowicz, On the M-theory approach to (compactified) 5-D field theories, Phys. Lett. B 415 (1997) 127 [hep-th/9709010] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards Classification of 5d SCFTs: Single Gauge Node, arXiv:1705.05836 [INSPIRE].
  40. [40]
    P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On Geometric Classification of 5d SCFTs, JHEP 04 (2018) 103 [arXiv:1801.04036] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    D. Xie and S.-T. Yau, Three dimensional canonical singularity and five dimensional \( \mathcal{N} \) = 1 SCFT, JHEP 06 (2017) 134 [arXiv:1704.00799] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  42. [42]
    F. Apruzzi, L. Lin and C. Mayrhofer, Phases of 5d SCFTs from M-/F-theory on Non-Flat Fibrations, arXiv:1811.12400 [INSPIRE].
  43. [43]
    C. Closset, M. Del Zotto and V. Saxena, Five-dimensional SCFTs and gauge theory phases: an M-theory/type IIA perspective, SciPost Phys. 6 (2019) 052 [arXiv:1812.10451] [INSPIRE].ADSGoogle Scholar
  44. [44]
    O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E n field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].ADSzbMATHGoogle Scholar
  45. [45]
    E. D’Hoker, M. Gutperle, A. Karch and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity I: Local solutions, JHEP 08 (2016) 046 [arXiv:1606.01254] [INSPIRE].zbMATHGoogle Scholar
  46. [46]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Holographic duals for five-dimensional superconformal quantum field theories, Phys. Rev. Lett. 118 (2017) 101601 [arXiv:1611.09411] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity II: Global solutions and five-brane webs, JHEP 05 (2017) 131 [arXiv:1703.08186] [INSPIRE].ADSzbMATHGoogle Scholar
  48. [48]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity III: Global solutions with seven-branes, JHEP 11 (2017) 200 [arXiv:1706.00433] [INSPIRE].ADSzbMATHGoogle Scholar
  49. [49]
    F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS 6 solutions of type-II supergravity, JHEP 11 (2014) 099 [Erratum ibid. 05 (2015) 012] [arXiv:1406.0852] [INSPIRE].
  50. [50]
    H. Kim, N. Kim and M. Suh, Supersymmetric AdS 6 Solutions of Type IIB Supergravity, Eur. Phys. J. C 75 (2015) 484 [arXiv:1506.05480] [INSPIRE].ADSGoogle Scholar
  51. [51]
    H. Kim and N. Kim, Comments on the symmetry of AdS 6 solutions in string/M-theory and Killing spinor equations, Phys. Lett. B 760 (2016) 780 [arXiv:1604.07987] [INSPIRE].ADSzbMATHGoogle Scholar
  52. [52]
    A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  53. [53]
    Y. Lozano, E. Ó Colgáin, D. Rodríguez-Gómez and K. Sfetsos, Supersymmetric AdS6 via T Duality, Phys. Rev. Lett. 110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].
  54. [54]
    Y. Lozano, E. Ó Colgáin and D. Rodríguez-Gómez, Hints of 5d Fixed Point Theories from Non-Abelian T-duality, JHEP 05 (2014) 009 [arXiv:1311.4842] [INSPIRE].
  55. [55]
    M. Gutperle, C. Marasinou, A. Trivella and C.F. Uhlemann, Entanglement entropy vs. free energy in IIB supergravity duals for 5d SCFTs, JHEP 09 (2017) 125 [arXiv:1705.01561] [INSPIRE].
  56. [56]
    J. Kaidi, (p,q)-strings probing five-brane webs, JHEP 10 (2017) 087 [arXiv:1708.03404] [INSPIRE].
  57. [57]
    F. Apruzzi, J.C. Geipel, A. Legramandi, N.T. Macpherson and M. Zagermann, Minkowski 4 × S 2 solutions of IIB supergravity, Fortsch. Phys. 66 (2018) 1800006 [arXiv:1801.00800] [INSPIRE].Google Scholar
  58. [58]
    M. Gutperle, A. Trivella and C.F. Uhlemann, Type IIB 7-branes in warped AdS 6 : partition functions, brane webs and probe limit, JHEP 04 (2018) 135 [arXiv:1802.07274] [INSPIRE].ADSzbMATHGoogle Scholar
  59. [59]
    M. Gutperle, C.F. Uhlemann and O. Varela, Massive spin 2 excitations in AdS 6 × S 2 warped spacetimes, JHEP 07 (2018) 091 [arXiv:1805.11914] [INSPIRE].ADSzbMATHGoogle Scholar
  60. [60]
    J. Kaidi and C.F. Uhlemann, M-theory curves from warped AdS 6 in Type IIB, JHEP 11 (2018) 175 [arXiv:1809.10162] [INSPIRE].ADSzbMATHGoogle Scholar
  61. [61]
    Y. Lozano, N.T. Macpherson and J. Montero, AdS 6 T-duals and type IIB AdS 6 × S 2 geometries with 7-branes, JHEP 01 (2019) 116 [arXiv:1810.08093] [INSPIRE].ADSzbMATHGoogle Scholar
  62. [62]
    K. Chen and M. Gutperle, Relating AdS 6 solutions in type IIB supergravity, JHEP 04 (2019) 054 [arXiv:1901.11126] [INSPIRE].ADSGoogle Scholar
  63. [63]
    O. Bergman, D. Rodríguez-Gómez and C.F. Uhlemann, Testing AdS6/CFT5 in Type IIB with stringy operators, JHEP 08 (2018) 127 [arXiv:1806.07898] [INSPIRE].
  64. [64]
    M. Fluder and C.F. Uhlemann, Precision Test of AdS 6 /CFT 5 in Type IIB String Theory, Phys. Rev. Lett. 121 (2018) 171603 [arXiv:1806.08374] [INSPIRE].ADSGoogle Scholar
  65. [65]
    J. Hong, J.T. Liu and D.R. Mayerson, Gauged Six-Dimensional Supergravity from Warped IIB Reductions, JHEP 09 (2018) 140 [arXiv:1808.04301] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  66. [66]
    E. Malek, H. Samtleben and V. Vall Camell, Supersymmetric AdS 7 and AdS 6 vacua and their minimal consistent truncations from exceptional field theory, Phys. Lett. B 786 (2018) 171 [arXiv:1808.05597] [INSPIRE].ADSzbMATHGoogle Scholar
  67. [67]
    E. Malek, H. Samtleben and V. Vall Camell, Supersymmetric AdS 7 and AdS 6 vacua and their consistent truncations with vector multiplets, JHEP 04 (2019) 088 [arXiv:1901.11039] [INSPIRE].ADSGoogle Scholar
  68. [68]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].ADSMathSciNetGoogle Scholar
  69. [69]
    A. Chaney and C.F. Uhlemann, On minimal Type IIB AdS 6 solutions with commuting 7-branes, JHEP 12 (2018) 110 [arXiv:1810.10592] [INSPIRE].ADSzbMATHGoogle Scholar
  70. [70]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSGoogle Scholar
  71. [71]
    O. Bergman and G. Zafrir, Lifting 4d dualities to 5d, JHEP 04 (2015) 141 [arXiv:1410.2806] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  72. [72]
    H. Hayashi, Y. Tachikawa and K. Yonekura, Mass-deformed T N as a linear quiver, JHEP 02 (2015) 089 [arXiv:1410.6868] [INSPIRE].ADSzbMATHGoogle Scholar
  73. [73]
    E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].ADSMathSciNetGoogle Scholar
  74. [74]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  75. [75]
    N.A. Nekrasov and S.L. Shatashvili, Bethe/Gauge correspondence on curved spaces, JHEP 01 (2015) 100 [arXiv:1405.6046] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  76. [76]
    N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531 (1998) 323 [hep-th/9609219] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  77. [77]
    F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP 07 (2016) 020 [arXiv:1511.09462] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  78. [78]
    H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP 05 (2013) 144 [arXiv:1206.6339] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  79. [79]
    H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M5-branes, arXiv:1211.0144 [INSPIRE].
  80. [80]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  81. [81]
    C. Closset, H. Kim and B. Willett, Supersymmetric partition functions and the three-dimensional A-twist, JHEP 03 (2017) 074 [arXiv:1701.03171] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  82. [82]
    C. Closset, H. Kim and B. Willett, Seifert fibering operators in 3d \( \mathcal{N} \) = 2 theories, JHEP 11 (2018) 004 [arXiv:1807.02328] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  83. [83]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Spheres, Charges, Instantons and Bootstrap: A Five-Dimensional Odyssey, JHEP 03 (2018) 123 [arXiv:1710.08418] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  84. [84]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Romans Supergravity from Five-Dimensional Holograms, JHEP 05 (2018) 039 [arXiv:1712.10313] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  85. [85]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  86. [86]
    J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  87. [87]
    Y. Imamura, Perturbative partition function for squashed S 5, PTEP 2013 (2013) 073B01 [arXiv:1210.6308] [INSPIRE].
  88. [88]
    G. Lockhart and C. Vafa, Superconformal Partition Functions and Non-perturbative Topological Strings, JHEP 10 (2018) 051 [arXiv:1210.5909] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Kavli IPMU (WPI), UTIASThe University of TokyoKashiwaJapan
  2. 2.Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A.

Personalised recommendations