Advertisement

Rank-3 antisymmetric matter on 5-brane webs

  • Hirotaka Hayashi
  • Sung-Soo KimEmail author
  • Kimyeong Lee
  • Futoshi Yagi
Open Access
Regular Article - Theoretical Physics

Abstract

We discuss Type IIB 5-brane configurations for 5d \( \mathcal{N}=1 \) gauge theories with hypermultiplets in the rank-3 antisymmetric representation and with various other hypermultiplets, which flow from a UV fixed point at the infinite coupling. We propose 5-brane web diagrams for the theories of SU(6) and Sp(3) gauge groups with rank-3 antisymmetric matter and check our proposed 5-brane webs against several consistency conditions implied from the one-loop corrected prepotential. Using the obtained 5-brane webs for rank-3 antisymmetric matter, we apply the topological vertex method to compute the partition function for one of these SU(6) gauge theories.

Keywords

Brane Dynamics in Gauge Theories Conformal Field Models in String Theory Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].
  2. [2]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].
  3. [3]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].
  4. [4]
    A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) 91 [hep-th/9711013] [INSPIRE].
  6. [6]
    A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].
  7. [7]
    I. Brunner and A. Karch, Branes and six-dimensional fixed points, Phys. Lett. B 409 (1997) 109 [hep-th/9705022] [INSPIRE].
  8. [8]
    O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP 12 (2015) 163 [arXiv:1507.03860] [INSPIRE].
  9. [9]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].
  10. [10]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-brane webs, symmetry enhancement and duality in 5d supersymmetric gauge theory, JHEP 03 (2014) 112 [arXiv:1311.4199] [INSPIRE].
  11. [11]
    O. Bergman and G. Zafrir, Lifting 4d dualities to 5d, JHEP 04 (2015) 141 [arXiv:1410.2806] [INSPIRE].
  12. [12]
    G. Zafrir, Brane webs and O5-planes, JHEP 03 (2016) 109 [arXiv:1512.08114] [INSPIRE].
  13. [13]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 5-brane webs for 5d \( \mathcal{N}=1 \) G 2 gauge theories, JHEP 03 (2018) 125 [arXiv:1801.03916] [INSPIRE].
  14. [14]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Dualities and 5-brane webs for 5d rank 2 SCFTs, JHEP 12 (2018) 016 [arXiv:1806.10569] [INSPIRE].
  15. [15]
    P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On Geometric Classification of 5d SCFTs, JHEP 04 (2018) 103 [arXiv:1801.04036] [INSPIRE].
  16. [16]
    Y. Tachikawa and S. Terashima, Seiberg-Witten geometries revisited, JHEP 09 (2011) 010 [arXiv:1108.2315] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    K. Ohmori, Y. Tachikawa and G. Zafrir, Compactifications of 6d N = (1, 0) SCFTs with non-trivial Stiefel-Whitney classes, JHEP 04 (2019) 006 [arXiv:1812.04637] [INSPIRE].
  18. [18]
    P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards classification of 5d SCFTs: single gauge node, arXiv:1705.05836 [INSPIRE].
  19. [19]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Discrete theta angle from an O5-plane, JHEP 11 (2017) 041 [arXiv:1707.07181] [INSPIRE].
  20. [20]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].
  21. [21]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].
  22. [22]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].
  23. [23]
    C. Closset, M. Del Zotto and V. Saxena, Five-dimensional SCFTs and gauge theory phases: an M-theory/type IIA perspective, SciPost Phys. 6 (2019) 052 [arXiv:1812.10451] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    H. Hayashi, H.-C. Kim and T. Nishinaka, Topological strings and 5d T N partition functions, JHEP 06 (2014) 014 [arXiv:1310.3854] [INSPIRE].
  25. [25]
    H. Hayashi and G. Zoccarato, Exact partition functions of Higgsed 5d T N theories, JHEP 01 (2015) 093 [arXiv:1409.0571] [INSPIRE].
  26. [26]
    S.-S. Kim, M. Taki and F. Yagi, Tao probing the end of the world, PTEP 2015 (2015) 083B02 [arXiv:1504.03672] [INSPIRE].
  27. [27]
    H. Hayashi and G. Zoccarato, Topological vertex for Higgsed 5d T N theories, JHEP 09 (2015) 023 [arXiv:1505.00260] [INSPIRE].
  28. [28]
    S.-S. Kim and F. Yagi, Topological vertex formalism with O5-plane, Phys. Rev. D 97 (2018) 026011 [arXiv:1709.01928] [INSPIRE].
  29. [29]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].
  30. [30]
    D. Kutasov, Orbifolds and solitons, Phys. Lett. B 383 (1996) 48 [hep-th/9512145] [INSPIRE].
  31. [31]
    A. Sen, Duality and orbifolds, Nucl. Phys. B 474 (1996) 361 [hep-th/9604070] [INSPIRE].
  32. [32]
    A. Kapustin, D(n) quivers from branes, JHEP 12 (1998) 015 [hep-th/9806238] [INSPIRE].
  33. [33]
    A. Hanany and A. Zaffaroni, Issues on orientifolds: On the brane construction of gauge theories with SO(2N) global symmetry, JHEP 07 (1999) 009 [hep-th/9903242] [INSPIRE].
  34. [34]
    H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, A new 5d description of 6d D-type minimal conformal matter, JHEP 08 (2015) 097 [arXiv:1505.04439] [INSPIRE].
  35. [35]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 6d SCFTs, 5d dualities and Tao web diagrams, arXiv:1509.03300 [INSPIRE].
  36. [36]
    H. Hayashi et al., More on 5d descriptions of 6d SCFTs, JHEP 10 (2016) 126 [arXiv:1512.08239] [INSPIRE].
  37. [37]
    M.R. Gaberdiel and B. Zwiebach, Exceptional groups from open strings, Nucl. Phys. B 518 (1998) 151 [hep-th/9709013] [INSPIRE].
  38. [38]
    M.R. Gaberdiel, T. Hauer and B. Zwiebach, Open string-string junction transitions, Nucl. Phys. B 525 (1998) 117 [hep-th/9801205] [INSPIRE].
  39. [39]
    O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E(n) field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].
  40. [40]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Equivalence of several descriptions for 6d SCFT, JHEP 01 (2017) 093 [arXiv:1607.07786] [INSPIRE].
  41. [41]
    G. Zafrir, Brane webs, 5d gauge theories and 6d \( \mathcal{N}=\left(1,0\right) \) SCFTs, JHEP 12 (2015) 157 [arXiv:1509.02016] [INSPIRE].
  42. [42]
    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering infinite symmetries on [p, q] 7-branes: Kac-Moody algebras and beyond, Adv. Theor. Math. Phys. 3 (1999) 1835 [hep-th/9812209] [INSPIRE].
  43. [43]
    K. Ohmori and H. Shimizu, S 1 /T 2 compactifications of 6d \( \mathcal{N}=\left(1,0\right) \) theories and brane webs, JHEP 03 (2016) 024 [arXiv:1509.03195] [INSPIRE].
  44. [44]
    H. Hayashi and K. Ohmori, 5d/6d DE instantons from trivalent gluing of web diagrams, JHEP 06 (2017) 078 [arXiv:1702.07263] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics, School of ScienceTokai UniversityHiratsuka-shiJapan
  2. 2.School of PhysicsUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.School of PhysicsKorea Institute for Advanced StudySeoulKorea
  4. 4.School of MathematicsSouthwest Jiaotong UniversityChengduChina

Personalised recommendations