From topological to quantum entanglement

  • D. MelnikovEmail author
  • A. Mironov
  • S. Mironov
  • A. Morozov
  • An. Morozov
Open Access
Regular Article - Theoretical Physics


Entanglement is a special feature of the quantum world that reflects the existence of subtle, often non-local, correlations between local degrees of freedom. In topological theories such non-local correlations can be given a very intuitive interpretation: quantum entanglement of subsystems means that there are “strings” connecting them. More generally, an entangled state, or similarly, the density matrix of a mixed state, can be represented by cobordisms of topological spaces. Using a formal mathematical definition of TQFT we construct basic examples of entangled states and compute their von Neumann entropy.


Topological Field Theories Chern-Simons Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81 (2009) 865 [quant-ph/0702225] [INSPIRE].
  2. [2]
    A. Einstein, B. Podolsky and N. Rosen, Can quantum mechanical description of physical reality be considered complete?, Phys. Rev. 47 (1935) 777 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Yu. Morozov, String theory: what is it?, Sov. Phys. Usp. 35 (1992) 671 [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613] [INSPIRE].
  6. [6]
    S. Dong, E. Fradkin, R.G. Leigh and S. Nowling, Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids, JHEP 05 (2008) 016 [arXiv:0802.3231] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    V. Balasubramanian, J.R. Fliss, R.G. Leigh and O. Parrikar, Multi-boundary entanglement in Chern-Simons theory and link invariants, JHEP 04 (2017) 061 [arXiv:1611.05460] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    V. Balasubramanian et al., Entanglement entropy and the colored Jones polynomial, JHEP 05 (2018) 038 [arXiv:1801.01131] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    G. Salton, B. Swingle and M. Walter, Entanglement from topology in Chern-Simons theory, Phys. Rev. D 95 (2017) 105007 [arXiv:1611.01516] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    S. Chun and N. Bao, Entanglement entropy from SU(2) Chern-Simons theory and symmetric webs, arXiv:1707.03525 [INSPIRE].
  11. [11]
    S. Dwivedi et al., Entanglement on linked boundaries in Chern-Simons theory with generic gauge groups, JHEP 02 (2018) 163 [arXiv:1711.06474] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A.Yu. Kitaev, Fault tolerant quantum computation by anyons, Annals Phys. 303 (2003) 2 [quant-ph/9707021] [INSPIRE].
  13. [13]
    M.H. Freedman, A. Kitaev and Z. Wang, Simulation of topological field theories by quantum computers, Commun. Math. Phys. 227 (2002) 587 [quant-ph/0001071] [INSPIRE].
  14. [14]
    D. Melnikov, A. Mironov, S. Mironov, A. Morozov and A. Morozov, Towards topological quantum computer, Nucl. Phys. B 926 (2018) 491 [arXiv:1703.00431] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    L.H. Kauffman, Knot logic and topological quantum computing with Majorana fermions, arXiv:1301.6214 [INSPIRE].
  16. [16]
    L.H. Kauffman and E. Mehrotra, Topological aspects of quantum entanglement, arXiv:1611.08047.
  17. [17]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Atiyah, Topological quantum field theories, Inst. Hautes Etudes Sci. Publ. Math. 68 (1989) 175 [INSPIRE].CrossRefzbMATHGoogle Scholar
  19. [19]
    M.F. Atiyah, The geometry and physics of knots, Cambridge University Press, Cambriddge U.K. (1990).Google Scholar
  20. [20]
    M. Dedushenko, Gluing I: integrals and symmetries, arXiv:1807.04274 [INSPIRE].
  21. [21]
    M. Dedushenko, Gluing II: boundary localization and gluing formulas, arXiv:1807.04278 [INSPIRE].
  22. [22]
    N. Lashkari, Relative entropies in conformal field theory, Phys. Rev. Lett. 113 (2014) 051602 [arXiv:1404.3216] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Camilo, D. Melnikov, F. Novaes and A. Prudenziati, Circuit complexity of knot states in Chern-Simons theory, arXiv:1903.10609 [INSPIRE].
  24. [24]
    A. Mironov, A. Morozov and A. Morozov, Tangle blocks in the theory of link invariants, JHEP 09 (2018) 128 [arXiv:1804.07278] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    P.K. Aravind, Borromean entanglement of the GHZ state, in Potentiality, entanglement and passion-at-a-distance, R.S. Cohen et al. eds., Kluwer, U.S.A. (1997).Google Scholar
  26. [26]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    H. Gharibyan and R.F. Penna, Are entangled particles connected by wormholes? Evidence for the ER=EPR conjecture from entropy inequalities, Phys. Rev. D 89 (2014) 066001 [arXiv:1308.0289] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement II: it from BC-bit, arXiv:1809.01197 [INSPIRE].
  29. [29]
    V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf and S.F. Ross, Multiboundary wormholes and holographic entanglement, Class. Quant. Grav. 31 (2014) 185015 [arXiv:1406.2663] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Khovanov and L.H. Robert, Foam evaluation and Kronheimer-Mrowka theories, arXiv:1808.09662.

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • D. Melnikov
    • 1
    • 2
    Email author
  • A. Mironov
    • 2
    • 3
    • 4
  • S. Mironov
    • 2
    • 5
    • 6
    • 7
  • A. Morozov
    • 2
    • 4
  • An. Morozov
    • 2
    • 4
    • 6
  1. 1.International Institute of PhysicsFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Institute for Theoretical and Experimental PhysicsMoscowRussia
  3. 3.I.E. Tamm Theory DepartmentLebedev Physics InstituteMoscowRussia
  4. 4.Institute for Information Transmission ProblemsMoscowRussia
  5. 5.Institute for Nuclear Research of the Russian Academy of SciencesMoscowRussia
  6. 6.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  7. 7.Institute for Theoretical and Mathematical PhysicsMoscowRussia

Personalised recommendations