Advertisement

Note on global symmetry and SYK model

  • Junyu LiuEmail author
  • Yehao Zhou
Open Access
Regular Article - Theoretical Physics
  • 38 Downloads

Abstract

The goal of this note is to explore the behavior of effective action in the SYK model with general continuous global symmetries. A global symmetry will decompose the whole Hamiltonian of a many-body system to several single charge sectors. For the SYK model, the effective action near the saddle point is given as the free product of the Schwarzian action part and the free action of the group element moving in the group manifold. With a detailed analysis in the free sigma model, we prove a modified version of Peter-Weyl theorem that works for generic spin structure. As a conclusion, we could make a comparison between the thermodynamics and the spectral form factors between the whole theory and the single charge sector, to make predictions on the SYK model and see how symmetry affects the chaotic behavior in certain timescales.

Keywords

2D Gravity AdS-CFT Correspondence Black Holes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  2. [2]
    A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk given at the Fundamental Physics Prize Symposium, 10 November 2014, https://www.youtube.com/watch?v=OQ9qN8j7EZI.
  3. [3]
    A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk at KITP, University of California, Santa Barbara U.S.A., 12 February 2015, http://online.kitp.ucsb.edu/online/joint98/kitaev/.
  4. [4]
    A. Kitaev, A simple model of quantum holography (part 1), talk at KITP, University of California, Santa Barbara U.S.A., 7 April 2015, http://online.kitp.ucsb.edu/online/entangled15/kitaev/.
  5. [5]
    A. Kitaev, A simple model of quantum holography (part 2), talk at KITP, University of California, Santa Barbara U.S.A., 27 May 2015, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.
  6. [6]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
  7. [7]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
  8. [8]
    W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev. B 94 (2016) 035135 [arXiv:1603.05246] [INSPIRE].
  9. [9]
    J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Jevicki, K. Suzuki and J. Yoon, Bi-Local Holography in the SYK Model, JHEP 07 (2016) 007 [arXiv:1603.06246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
  12. [12]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  13. [13]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [Addendum ibid. D 95 (2017) 069904] [arXiv:1610.08917] [INSPIRE].
  14. [14]
    E. Witten, An SYK-Like Model Without Disorder, arXiv:1610.09758 [INSPIRE].
  15. [15]
    R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].
  16. [16]
    D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev Model and Thermalization on the Boundary of Many-Body Localized Fermionic Symmetry Protected Topological States, Phys. Rev. B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].
  18. [18]
    J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
  19. [19]
    J. Cotler, N. Hunter-Jones, J. Liu and B. Yoshida, Chaos, Complexity and Random Matrices, JHEP 11 (2017) 048 [arXiv:1706.05400] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Liu, Spectral form factors and late time quantum chaos, Phys. Rev. D 98 (2018) 086026 [arXiv:1806.05316] [INSPIRE].
  21. [21]
    P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].
  22. [22]
    M.S. Marinov and M.V. Terentev, Dynamics on the group manifolds and path integral, Fortsch. Phys. 27 (1979) 511 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    R.F. Picken, The Propagator for Quantum Mechanics on a Group Manifold From an Infinite Dimensional Analog of the Duistermaat-heckman Integration Formula, J. Phys. A 22 (1989) 2285 [INSPIRE].
  24. [24]
    M.-f. Chu and P. Goddard, Quantization of a particle moving on a group manifold, Phys. Lett. B 337 (1994) 285 [hep-th/9407116] [INSPIRE].
  25. [25]
    K. Bulycheva, A note on the SYK model with complex fermions, JHEP 12 (2017) 069 [arXiv:1706.07411] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    P. Chaturvedi, Y. Gu, W. Song and B. Yu, A note on the complex SYK model and warped CFTs, JHEP 12 (2018) 101 [arXiv:1808.08062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R. Bhattacharya, D.P. Jatkar and A. Kundu, Chaotic Correlation Functions with Complex Fermions, arXiv:1810.13217 [INSPIRE].
  28. [28]
    Y. Gu, A. Kitaev, S. Sachdev and G. Tarnopolsky, to appear.Google Scholar
  29. [29]
    Y. Gu, private communications.Google Scholar
  30. [30]
    S. Sachdev, Universal low temperature theory of charged black holes with AdS 2 horizons, arXiv:1902.04078 [INSPIRE].
  31. [31]
    D.J. Gross and V. Rosenhaus, A Generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    J. Yoon, SYK Models and SYK-like Tensor Models with Global Symmetry, JHEP 10 (2017) 183 [arXiv:1707.01740] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    P. Narayan and J. Yoon, Supersymmetric SYK Model with Global Symmetry, JHEP 08 (2018) 159 [arXiv:1712.02647] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].
  35. [35]
    I.R. Klebanov and G. Tarnopolsky, On Large N Limit of Symmetric Traceless Tensor Models, JHEP 10 (2017) 037 [arXiv:1706.00839] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    S. Giombi, I.R. Klebanov and G. Tarnopolsky, Bosonic tensor models at large N and small ϵ, Phys. Rev. D 96 (2017) 106014 [arXiv:1707.03866] [INSPIRE].
  37. [37]
    K. Bulycheva, I.R. Klebanov, A. Milekhin and G. Tarnopolsky, Spectra of Operators in Large N Tensor Models, Phys. Rev. D 97 (2018) 026016 [arXiv:1707.09347] [INSPIRE].
  38. [38]
    I.R. Klebanov, A. Milekhin, F. Popov and G. Tarnopolsky, Spectra of eigenstates in fermionic tensor quantum mechanics, Phys. Rev. D 97 (2018) 106023 [arXiv:1802.10263] [INSPIRE].
  39. [39]
    S. Giombi, I.R. Klebanov, F. Popov, S. Prakash and G. Tarnopolsky, Prismatic Large N Models for Bosonic Tensors, Phys. Rev. D 98 (2018) 105005 [arXiv:1808.04344] [INSPIRE].
  40. [40]
    K. Pakrouski, I.R. Klebanov, F. Popov and G. Tarnopolsky, Spectrum of Majorana Quantum Mechanics with O(4)3 Symmetry, Phys. Rev. Lett. 122 (2019) 011601 [arXiv:1808.07455] [INSPIRE].
  41. [41]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].
  42. [42]
    D. Anninos, T. Anous and R.T. D’Agnolo, Marginal deformations & rotating horizons, JHEP 12 (2017) 095 [arXiv:1707.03380] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    N. Hunter-Jones, Chaos and Randomness in Strongly-Interacting Quantum Systems, Ph.D. Thesis, California Institute of Technology Pasadena, California, (2018), https://thesis.library.caltech.edu/11002/7/NicholasHunterJones-2018-thesisa.pdf .
  44. [44]
    T. Li, J. Liu, Y. Xin and Y. Zhou, Supersymmetric SYK model and random matrix theory, JHEP 06 (2017) 111 [arXiv:1702.01738] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    T. Kanazawa and T. Wettig, Complete random matrix classification of SYK models with \( \mathcal{N}=0,1 \) and 2 supersymmetry, JHEP 09 (2017) 050 [arXiv:1706.03044] [INSPIRE].
  46. [46]
    N. Hunter-Jones and J. Liu, Chaos and random matrices in supersymmetric SYK, JHEP 05 (2018) 202 [arXiv:1710.08184] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, arXiv:1810.05338 [INSPIRE].
  48. [48]
    D. Harlow and H. Ooguri, Constraints on symmetry from holography, arXiv:1810.05337 [INSPIRE].
  49. [49]
    D. Harlow, A holographic generalization of the Eastin-Knill theorem, talk given in Quantum Information Processing (QIP), University of Colorado Boulder, U.S.A., 2019.Google Scholar
  50. [50]
    P. Faist et al., Continuous symmetries and approximate quantum error correction, arXiv:1902.07714 [INSPIRE].
  51. [51]
    V. Khemani, A. Vishwanath and D.A. Huse, Operator spreading and the emergence of dissipation in unitary dynamics with conservation laws, Phys. Rev. X 8 (2018) 031057 [arXiv:1710.09835] [INSPIRE].
  52. [52]
    T. Rakovszky, F. Pollmann and C.W. von Keyserlingk, Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation, Phys. Rev. X 8 (2018) 031058 [arXiv:1710.09827] [INSPIRE].
  53. [53]
    B. Yoshida, Soft mode and interior operator in Hayden-Preskill thought experiment, arXiv:1812.07353 [INSPIRE].
  54. [54]
    T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the Conformal Bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    T.G. Mertens, The Schwarzian theoryorigins, JHEP 05 (2018) 036 [arXiv:1801.09605] [INSPIRE].
  56. [56]
    Y.-H. Qi, Y. Seo, S.-J. Sin and G. Song, Correlation functions in Schwarzian liquid, Phys. Rev. D 99 (2019) 066001 [arXiv:1804.06164] [INSPIRE].
  57. [57]
    H.T. Lam, T.G. Mertens, G.J. Turiaci and H. Verlinde, Shockwave S-matrix from Schwarzian Quantum Mechanics, JHEP 11 (2018) 182 [arXiv:1804.09834] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    A. Blommaert, T.G. Mertens and H. Verschelde, The Schwarzian TheoryA Wilson Line Perspective, JHEP 12 (2018) 022 [arXiv:1806.07765] [INSPIRE].
  59. [59]
    D. Stanford, private communications.Google Scholar
  60. [60]
    A. Knapp, Compact Lie Groups, in Lie Groups Beyond an Introduction, Progress in Mathematics, vol 140. Birkhäuser, Boston, MA, U.S.A., (1996).Google Scholar
  61. [61]
    J. Humphreys, Introduction to Lie algebras and representation theory, Vol. 9, Springer Science & Business Media, (2012).Google Scholar
  62. [62]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].
  63. [63]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].
  65. [65]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Walter Burke Institute for Theoretical PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.
  2. 2.Institute for Quantum Information and Matter, California Institute of TechnologyPasadenaU.S.A.
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  4. 4.Department of Physics & AstronomyUniversity of WaterlooWaterlooCanada

Personalised recommendations