Advertisement

Leading loop effects in pseudoscalar-Higgs portal dark matter

  • Karim GhorbaniEmail author
  • Parsa Hossein Ghorbani
Open Access
Regular Article - Theoretical Physics
  • 64 Downloads

Abstract

We examine a model with a fermionic dark matter candidate having pseudoscalar interaction with the standard model particles where its direct detection elastic scattering cross section at tree level is highly suppressed. We then calculate analytically the leading loop contribution to the spin independent scattering cross section. It turns out that these loop effects are sizable over a large region of the parameter space. Taking constraints from direct detection experiments, the invisible Higgs decay measurements, observed DM relic density, we find viable regions which are within reach in the future direct detection experiments such as XENONnT.

Keywords

Cosmology of Theories beyond the SM Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Planck collaboration, Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  2. [2]
    WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
  3. [3]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  4. [4]
    XENON collaboration, First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  5. [5]
    PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  6. [6]
    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The Effective Field Theory of Dark Matter Direct Detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Arcadi, M. Lindner, F.S. Queiroz, W. Rodejohann and S. Vogl, Pseudoscalar Mediators: A WIMP model at the Neutrino Floor, JCAP 03 (2018) 042 [arXiv:1711.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N.F. Bell, G. Busoni and I.W. Sanderson, Loop Effects in Direct Detection, JCAP 08 (2018) 017 [Erratum ibid. 01 (2019) E01] [arXiv:1803.01574] [INSPIRE].
  9. [9]
    T. Abe, M. Fujiwara and J. Hisano, Loop corrections to dark matter direct detection in a pseudoscalar mediator dark matter model, JHEP 02 (2019) 028 [arXiv:1810.01039] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Li, Revisiting the direct detection of dark matter in simplified models, Phys. Lett. B 782 (2018) 497 [arXiv:1804.02120] [INSPIRE].
  11. [11]
    J. Herrero-Garcia, E. Molinaro and M.A. Schmidt, Dark matter direct detection of a fermionic singlet at one loop, Eur. Phys. J. C 78 (2018) 471 [arXiv:1803.05660] [INSPIRE].
  12. [12]
    J. Hisano, R. Nagai and N. Nagata, Singlet Dirac Fermion Dark Matter with Mediators at Loop, JHEP 12 (2018) 059 [arXiv:1808.06301] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Han, H. Liu, S. Mukhopadhyay and X. Wang, Dark Matter Blind Spots at One-Loop, JHEP 03 (2019) 080 [arXiv:1810.04679] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Azevedo, M. Duch, B. Grzadkowski, D. Huang, M. Iglicki and R. Santos, One-loop contribution to dark-matter-nucleon scattering in the pseudo-scalar dark matter model, JHEP 01 (2019) 138 [arXiv:1810.06105] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Ishiwata and T. Toma, Probing pseudo Nambu-Goldstone boson dark matter at loop level, JHEP 12 (2018) 089 [arXiv:1810.08139] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    K. Ghorbani, Fermionic dark matter with pseudo-scalar Yukawa interaction, JCAP 01 (2015) 015 [arXiv:1408.4929] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Baek, P. Ko and J. Li, Minimal renormalizable simplified dark matter model with a pseudoscalar mediator, Phys. Rev. D 95 (2017) 075011 [arXiv:1701.04131] [INSPIRE].
  18. [18]
    P.H. Ghorbani, Electroweak Baryogenesis and Dark Matter via a Pseudoscalar vs. Scalar, JHEP 08 (2017) 058 [arXiv:1703.06506] [INSPIRE].
  19. [19]
    CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s}=7,8 \) and 13TeV, JHEP 02 (2017) 135 [arXiv:1610.09218] [INSPIRE].
  20. [20]
    K. Ghorbani and L. Khalkhali, Mono-Higgs signature in a fermionic dark matter model, J. Phys. G 44 (2017) 105004 [arXiv:1608.04559] [INSPIRE].
  21. [21]
    D. Barducci et al., Collider limits on new physics within MicrOMEGAs 4.3, Comput. Phys. Commun. 222 (2018) 327 [arXiv:1606.03834] [INSPIRE].
  22. [22]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  23. [23]
    B.W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
  25. [25]
    S. Ipek, D. McKeen and A.E. Nelson, A Renormalizable Model for the Galactic Center Gamma Ray Excess from Dark Matter Annihilation, Phys. Rev. D 90 (2014) 055021 [arXiv:1404.3716] [INSPIRE].
  26. [26]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3 : A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].
  27. [27]
    Fermi-LAT collaboration, Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of SciencesArak UniversityArakIran
  2. 2.Applied Physics Inc., Center for Cosmological ResearchNew YorkU.S.A.

Personalised recommendations