Advertisement

Type II solutions on AdS3 × S3 × S3 with large superconformal symmetry

  • Niall T. MacphersonEmail author
Open Access
Regular Article - Theoretical Physics
  • 39 Downloads

Abstract

New local solutions in type II supergravity that are foliations of AdS3 ×S3 ×S3 over an interval and preserve at least large \( \mathcal{N}=\left(4,0\right) \) supersymmetry are found. Some cases have compact internal space, some not and one experiences an enhancement to \( \mathcal{N}=\left(4,4\right) \). We present two new globally compact solutions with D brane and O plane sources explicitly, one in each of IIA and IIB. The former is part of an infinite family of solutions with D8/O8s back reacted on AdS3 × S3 × S3 × S1. In the latter the algebra degenerates to small \( \mathcal{N}=\left(4,0\right) \) and the internal geometry is bounded between D5s and O5s back reacted on AdS3 × S3 ×ℝ4.

Keywords

AdS-CFT Correspondence D-branes Extended Supersymmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H.J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, anti-de Sitter space-times and dual superconformal theories, Nucl. Phys. B 533 (1998) 127 [hep-th/9803231] [INSPIRE].
  2. [2]
    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS 3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].
  3. [3]
    S. Elitzur, O. Feinerman, A. Giveon and D. Tsabar, String theory on AdS 3 × S 3 × S 3 × S 1, Phys. Lett. B 449 (1999) 180 [hep-th/9811245] [INSPIRE].
  4. [4]
    J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2-D N = 4 superconformal symmetry, Adv. Theor. Math. Phys. 3 (1999) 577 [hep-th/9904073] [INSPIRE].
  5. [5]
    R. Argurio, A. Giveon and A. Shomer, Superstring theory on AdS 3 × G/H and boundary N = 3 superconformal symmetry, JHEP 04 (2000) 010 [hep-th/0002104] s[INSPIRE].
  6. [6]
    S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The search for a holographic dual to AdS 3 × S 3 × S 3 × S 1, Adv. Theor. Math. Phys. 9 (2005) 435 [hep-th/0403090] [INSPIRE].
  7. [7]
    N. Kim, AdS 3 solutions of IIB supergravity from D3-branes, JHEP 01 (2006) 094 [hep-th/0511029] [INSPIRE].
  8. [8]
    J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, Supersymmetric AdS 3 solutions of type IIB supergravity, Phys. Rev. Lett. 97 (2006) 171601 [hep-th/0606221] [INSPIRE].
  9. [9]
    A. Donos, J.P. Gauntlett and J. Sparks, AdS 3 × (S 3 × S 3 × S 1) Solutions of Type IIB String Theory, Class. Quant. Grav. 26 (2009) 065009 [arXiv:0810.1379] [INSPIRE].
  10. [10]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact Half-BPS Flux Solutions in M-theory. I: Local Solutions, JHEP 08 (2008) 028 [arXiv:0806.0605] [INSPIRE].
  11. [11]
    J. Estes, R. Feldman and D. Krym, Exact half-BPS flux solutions in M theory with D(2, 1; c ; 0)2 symmetry: Local solutions, Phys. Rev. D 87 (2013) 046008 [arXiv:1209.1845] [INSPIRE].
  12. [12]
    C. Bachas, E. D’Hoker, J. Estes and D. Krym, M-theory Solutions Invariant under D(2, 1; γ) ⊕ D(2, 1; γ), Fortsch. Phys. 62 (2014) 207 [arXiv:1312.5477] [INSPIRE].
  13. [13]
    J. Jeong, E. Ó Colgáin and K. Yoshida, SUSY properties of warped AdS 3, JHEP 06 (2014) 036 [arXiv:1402.3807] [INSPIRE].
  14. [14]
    A. Donos and J.P. Gauntlett, Flowing from AdS 5 to AdS 3 with T 1,1, JHEP 08 (2014) 006 [arXiv:1404.7133] [INSPIRE].
  15. [15]
    Ö. Kelekci, Y. Lozano, N.T. Macpherson and E. Ó Colgáin, Supersymmetry and non-Abelian T-duality in type-II supergravity, Class. Quant. Grav. 32 (2015) 035014 [arXiv:1409.7406] [INSPIRE].
  16. [16]
    Y. Lozano, N.T. Macpherson, J. Montero and E. Ó Colgáin, New AdS 3 × S 2 T-duals with \( \mathcal{N}=\left(0,4\right) \) supersymmetry, JHEP 08 (2015) 121 [arXiv:1507.02659] [INSPIRE].
  17. [17]
    P. Karndumri and E. Ó Colgáin, 3D supergravity from wrapped M5-branes, JHEP 03 (2016) 188 [arXiv:1508.00963] [INSPIRE].
  18. [18]
    Ö. Kelekci, Y. Lozano, J. Montero, E. Ó Colgáin and M. Park, Large superconformal near-horizons from M-theory, Phys. Rev. D 93 (2016) 086010 [arXiv:1602.02802] [INSPIRE].
  19. [19]
    L. Eberhardt, M.R. Gaberdiel, R. Gopakumar and W. Li, BPS spectrum on AdS 3×S 3×S 3×S 1, JHEP 03 (2017) 124 [arXiv:1701.03552] [INSPIRE].
  20. [20]
    C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and AdS 3 /CFT 2, JHEP 08 (2017) 043 [arXiv:1705.04679] [INSPIRE].
  21. [21]
    C. Couzens, D. Martelli and S. Schäfer-Nameki, F-theory and AdS 3 /CFT 2 (2, 0), JHEP 06 (2018) 008 [arXiv:1712.07631] [INSPIRE].
  22. [22]
    L. Eberhardt, Supersymmetric AdS 3 supergravity backgrounds and holography, JHEP 02 (2018) 087 [arXiv:1710.09826] [INSPIRE].
  23. [23]
    S. Datta, L. Eberhardt and M.R. Gaberdiel, Stringy \( \mathcal{N}=\left(2,2\right) \) holography for AdS 3, JHEP 01 (2018) 146 [arXiv:1709.06393] [INSPIRE].
  24. [24]
    L. Eberhardt and I.G. Zadeh, \( \mathcal{N}=\left(3,3\right) \) holography on AdS 3 × (S 3 × S 3 × S 1)/2, JHEP 07 (2018) 143 [arXiv:1805.09832] [INSPIRE].
  25. [25]
    S. Beck, U. Gran, J. Gutowski and G. Papadopoulos, All Killing Superalgebras for Warped AdS Backgrounds, JHEP 12 (2018) 047 [arXiv:1710.03713] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    G. Dibitetto, G. Lo Monaco, A. Passias, N. Petri and A. Tomasiello, AdS 3 Solutions with Exceptional Supersymmetry, Fortsch. Phys. 66 (2018) 1800060 [arXiv:1807.06602] [INSPIRE].
  27. [27]
    A. Sevrin, W. Troost and A. Van Proeyen, Superconformal Algebras in Two-Dimensions with N = 4, Phys. Lett. B 208(1988) 447 [INSPIRE].
  28. [28]
    D. Tong, The holographic dual of AdS 3 × S 3 × S 3 × S 1, JHEP 04 (2014) 193 [arXiv:1402.5135] [INSPIRE].
  29. [29]
    L. Eberhardt, M.R. Gaberdiel and W. Li, A holographic dual for string theory on AdS 3 × S 3 × S 3 × S 1, JHEP 08 (2017) 111 [arXiv:1707.02705] [INSPIRE].
  30. [30]
    G. Dibitetto and N. Petri, Surface defects in the D4D8 brane system, JHEP 01 (2019) 193 [arXiv:1807.07768] [INSPIRE].
  31. [31]
    G. Dibitetto and N. Petri, AdS 2 solutions and their massive IIA origin, arXiv:1811.11572 [INSPIRE].
  32. [32]
    A.S. Haupt, S. Lautz and G. Papadopoulos, A non-existence theorem for N > 16 supersymmetric AdS 3 backgrounds, JHEP 07 (2018) 178 [arXiv:1803.08428] [INSPIRE].
  33. [33]
    N.T. Macpherson and A. Tomasiello, Minimal flux Minkowski classification, JHEP 09 (2017) 126 [arXiv:1612.06885] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    N.T. Macpherson, J. Montero and D. Prins, Mink 3 × S 3 solutions of type-II supergravity, Nucl. Phys. B 933 (2018) 185 [arXiv:1712.00851] [INSPIRE].
  35. [35]
    F. Apruzzi, J.C. Geipel, A. Legramandi, N.T. Macpherson and M. Zagermann, Minkowski 4 × S 2 solutions of IIB supergravity, Fortsch. Phys. 66 (2018) 1800006 [arXiv:1801.00800] [INSPIRE].
  36. [36]
    G.B. De Luca, G.L. Monaco, N.T. Macpherson, A. Tomasiello and O. Varela, The geometry of \( \mathcal{N}=3 \) AdS 4 in massive IIA, JHEP 08 (2018) 133 [arXiv:1805.04823] [INSPIRE].
  37. [37]
    A. Legramandi and N.T. Macpherson, Mink 4 × S 2 Solutions of 10 and 11 Dimensional Supergravity, arXiv:1811.11224 [INSPIRE].
  38. [38]
    F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS 7 solutions of type-II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].
  39. [39]
    E. D’Hoker, J. Estes, M. Gutperle, D. Krym and P. Sorba, Half-BPS supergravity solutions and superalgebras, JHEP 12 (2008) 047 [arXiv:0810.1484] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    C. Córdova, G.B. De Luca and A. Tomasiello, Classical de Sitter Solutions of 10-Dimensional Supergravity, Phys. Rev. Lett. 122 (2019) 091601 [arXiv:1812.04147] [INSPIRE].
  41. [41]
    S. Cremonesi and A. Tomasiello, 6d holographic anomaly match as a continuum limit, JHEP 05 (2016) 031 [arXiv:1512.02225] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1 backgrounds, JHEP 11 (2005) 048 [hep-th/0507099] [INSPIRE].
  43. [43]
    D. Lüst, P. Patalong and D. Tsimpis, Generalized geometry, calibrations and supersymmetry in diverse dimensions, JHEP 01 (2011) 063 [arXiv:1010.5789] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Legramandi, L. Martucci and A. Tomasiello, Timelike structures of ten-dimensional supersymmetry, JHEP 04 (2019) 109 [arXiv:1810.08625] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Haack, D. Lüst, L. Martucci and A. Tomasiello, Domain walls from ten dimensions, JHEP 10 (2009) 089 [arXiv:0905.1582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.SISSA International School for Advanced StudiesTriesteItalia
  2. 2.INFN, sezione di TriesteTriesteItalia

Personalised recommendations