Analytic form of the planar two-loop five-parton scattering amplitudes in QCD

  • S. Abreu
  • J. Dormans
  • F. Febres Cordero
  • H. Ita
  • B. Page
  • V. SotnikovEmail author
Open Access
Regular Article - Theoretical Physics


We present the analytic form of all leading-color two-loop five-parton helicity amplitudes in QCD. The results are analytically reconstructed from exact numerical evaluations over finite fields. Combining a judicious choice of variables with a new approach to the treatment of particle states in D dimensions for the numerical evaluation of amplitudes, we obtain the analytic expressions with a modest computational effort. Their systematic simplification using multivariate partial-fraction decomposition leads to a particularly compact form. Our results provide all two-loop amplitudes required for the calculation of next-to-next-to-leading order QCD corrections to the production of three jets at hadron colliders in the leading-color approximation.


Perturbative QCD Scattering Amplitudes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material


  1. [1]
    S. Badger, H. Frellesvig and Y. Zhang, A Two-Loop Five-Gluon Helicity Amplitude in QCD, JHEP 12 (2013) 045 [arXiv:1310.1051] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [Erratum ibid. 116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].
  3. [3]
    D.C. Dunbar and W.B. Perkins, Two-loop five-point all plus helicity Yang-Mills amplitude, Phys. Rev. D 93 (2016) 085029 [arXiv:1603.07514] [INSPIRE].
  4. [4]
    D.C. Dunbar, G.R. Jehu and W.B. Perkins, Two-loop six gluon all plus helicity amplitude, Phys. Rev. Lett. 117 (2016) 061602 [arXiv:1605.06351] [INSPIRE].
  5. [5]
    D.C. Dunbar, J.H. Godwin, G.R. Jehu and W.B. Perkins, Analytic all-plus-helicity gluon amplitudes in QCD, Phys. Rev. D 96 (2017) 116013 [arXiv:1710.10071] [INSPIRE].
  6. [6]
    S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop five-gluon scattering in QCD, Phys. Rev. Lett. 120 (2018) 092001 [arXiv:1712.02229] [INSPIRE].
  7. [7]
    S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar Two-Loop Five-Gluon Amplitudes from Numerical Unitarity, Phys. Rev. D 97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].
  8. [8]
    S. Badger et al., Applications of integrand reduction to two-loop five-point scattering amplitudes in QCD, PoS(LL2018)006 (2018) [arXiv:1807.09709] [INSPIRE].
  9. [9]
    S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar Two-Loop Five-Parton Amplitudes from Numerical Unitarity, JHEP 11 (2018) 116 [arXiv:1809.09067] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP 12 (2016) 030 [arXiv:1608.01902] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case, JHEP 01 (2019) 186 [arXiv:1811.11699] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic Form of Planar Two-Loop Five-Gluon Scattering Amplitudes in QCD, Phys. Rev. Lett. 122 (2019) 082002 [arXiv:1812.04586] [INSPIRE].
  13. [13]
    C.G. Papadopoulos, D. Tommasini and C. Wever, The Pentabox Master Integrals with the Simplified Differential Equations approach, JHEP 04 (2016) 078 [arXiv:1511.09404] [INSPIRE].ADSGoogle Scholar
  14. [14]
    T. Gehrmann, J.M. Henn and N.A. Lo Presti, Pentagon functions for massless planar scattering amplitudes, JHEP 10 (2018) 103 [arXiv:1807.09812] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    S. Badger, G. Mogull, A. Ochirov and D. O’Connell, A Complete Two-Loop, Five-Gluon Helicity Amplitude in Yang-Mills Theory, JHEP 10 (2015) 064 [arXiv:1507.08797] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in \( \mathcal{N}=4 \) super-Yang-Mills theory, Phys. Rev. Lett. 122 (2019) 121603 [arXiv:1812.08941] [INSPIRE].
  17. [17]
    D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, All master integrals for three-jet production at NNLO, arXiv:1812.11160 [INSPIRE].
  18. [18]
    R.H. Boels, Q. Jin and H. Lüo, Efficient integrand reduction for particles with spin, arXiv:1802.06761 [INSPIRE].
  19. [19]
    H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes within the integration-by-parts approach, Phys. Rev. D 99 (2019) 076011 [arXiv:1805.09182] [INSPIRE].
  20. [20]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
  21. [21]
    R.K. Ellis, W.T. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    C.F. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].
  24. [24]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
  25. [25]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
  26. [26]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [INSPIRE].
  27. [27]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].
  28. [28]
    H. Ita, Two-loop Integrand Decomposition into Master Integrals and Surface Terms, Phys. Rev. D 94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].
  29. [29]
    S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier and B. Page, Subleading Poles in the Numerical Unitarity Method at Two Loops, Phys. Rev. D 95 (2017) 096011 [arXiv:1703.05255] [INSPIRE].
  30. [30]
    S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-Loop Four-Gluon Amplitudes from Numerical Unitarity, Phys. Rev. Lett. 119 (2017) 142001 [arXiv:1703.05273] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction, Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].
  32. [32]
    F.R. Anger and V. Sotnikov, On the Dimensional Regularization of QCD Helicity Amplitudes With Quarks, arXiv:1803.11127 [INSPIRE].
  33. [33]
    R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [INSPIRE].
  34. [34]
    R. Boughezal, K. Melnikov and F. Petriello, The four-dimensional helicity scheme and dimensional reconstruction, Phys. Rev. D 84 (2011) 034044 [arXiv:1106.5520] [INSPIRE].
  35. [35]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    E.W.N. Glover, Two loop QCD helicity amplitudes for massless quark quark scattering, JHEP 04 (2004) 021 [hep-ph/0401119] [INSPIRE].
  37. [37]
    A. De Freitas and Z. Bern, Two-loop helicity amplitudes for quark-quark scattering in QCD and gluino-gluino scattering in supersymmetric Yang-Mills theory, JHEP 09 (2004) 039 [hep-ph/0409007] [INSPIRE].
  38. [38]
    S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
  39. [39]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].
  40. [40]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
  41. [41]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R. Baumeister, D. Mediger, J. Pečovnik and S. Weinzierl, On the vanishing of certain cuts or residues of loop integrals with higher powers of the propagators, arXiv:1903.02286 [INSPIRE].
  43. [43]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
  44. [44]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    D. Cox, J. Little and D. O’Shea, Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathematics, Springer, Cham (2015).Google Scholar
  48. [48]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    A. Ochirov and B. Page, Full Colour for Loop Amplitudes in Yang-Mills Theory, JHEP 02 (2017) 100 [arXiv:1612.04366] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    A. Ochirov and B. Page, Multi-quark colour decompositions from unitarity, in preparation (2019).Google Scholar
  51. [51]
    W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-0A computer algebra system for polynomial computations, (2016).
  52. [52]
    T. Gautier, J.-L. Roch and G. Villard, Givaro, (2017).
  53. [53]
    P. Barrett, Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor, Springer, Berlin, Heidelberg (1987).Google Scholar
  54. [54]
    J. van der Hoeven, G. Lecerf and G. Quintin, Modular SIMD arithmetic in mathemagix, CoRR abs/1407.3383 (2014) [arXiv:1407.3383].
  55. [55]
    F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].
  56. [56]
    F.R. Anger, F. Febres Cordero, H. Ita and V. Sotnikov, NLO QCD predictions for \( Wb\overline{b} \) production in association with up to three light jets at the LHC, Phys. Rev. D 97 (2018) 036018 [arXiv:1712.05721] [INSPIRE].
  57. [57]
    J.C. Collins, Renormalization, Cambridge Monographs on Mathematical Physics, vol. 26, Cambridge University Press, Cambridge (1986).Google Scholar
  58. [58]
    M. Kreuzer, Lecture notes: Supersymetry, (2010).
  59. [59]
    Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two loop QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 [hep-ph/0202271] [INSPIRE].
  60. [60]
    D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, Analytic result for a two-loop five-particle amplitude, Phys. Rev. Lett. 122 (2019) 121602 [arXiv:1812.11057] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in \( \mathcal{N}= 8 \) supergravity, JHEP 03 (2019) 123 [arXiv:1901.08563] [INSPIRE].
  62. [62]
    D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, The two-loop five-particle amplitude in \( \mathcal{N}=8 \) supergravity, JHEP 03 (2019) 115 [arXiv:1901.05932] [INSPIRE].
  63. [63]
    P.S. Wang, A p-adic algorithm for univariate partial fractions, in Proceedings of the Fourth ACM Symposium on Symbolic and Algebraic Computation, SYMSAC ’81, New York, NY, U.S.A., pp. 212-217, ACM (1981) [].
  64. [64]
    E.K. Leinartas, Factorization of rational functions of several variables into partial fractions, Izv. Vyssh. Uchebn. Zaved. Mat. (1978) 47.Google Scholar
  65. [65]
    A. Raichev, Leinartass partial fraction decomposition, arXiv:1206.4740.
  66. [66]
    C. Meyer, Transforming differential equations of multi-loop Feynman integrals into canonical form, JHEP 04 (2017) 006 [arXiv:1611.01087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    Y. Zhang, Integrand-Level Reduction of Loop Amplitudes by Computational Algebraic Geometry Methods, JHEP 09 (2012) 042 [arXiv:1205.5707] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering Amplitudes from Multivariate Polynomial Division, Phys. Lett. B 718 (2012) 173 [arXiv:1205.7087] [INSPIRE].
  69. [69]
    A.V. Smirnov and V.A. Smirnov, Applying Grobner bases to solve reduction problems for Feynman integrals, JHEP 01 (2006) 001 [hep-lat/0509187] [INSPIRE].
  70. [70]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE].
  71. [71]
    Z. Kunszt, A. Signer and Z. Trócsányi, One loop radiative corrections to the helicity amplitudes of QCD processes involving four quarks and one gluon, Phys. Lett. B 336 (1994) 529 [hep-ph/9405386] [INSPIRE].
  72. [72]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys. B 437 (1995) 259 [hep-ph/9409393] [INSPIRE].
  73. [73]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
  74. [74]
    B. Ruijl, A. Plaat, J. Vermaseren and J. van den Herik, Why Local Search Excels in Expression Simplification, arXiv:1409.5223 [INSPIRE].
  75. [75]
    J.L. Bourjaily, Efficient Tree-Amplitudes in N = 4: Automatic BCFW Recursion in Mathematica, arXiv:1011.2447 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-La-NeuveBelgium
  2. 2.Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  3. 3.Physics DepartmentFlorida State UniversityTallahasseeU.S.A.
  4. 4.Institut de Physique Théorique, CEA, CNRSUniversité Paris-SaclayGif-sur-Yvette cedexFrance

Personalised recommendations