Advertisement

Two-loop doubly massive four-point amplitude involving a half-BPS and Konishi operator

  • Taushif AhmedEmail author
  • Prasanna K. Dhani
Open Access
Regular Article - Theoretical Physics

Abstract

The two-loop four-point amplitude of two massless SU(N) colored scalars and two color singlet operators with different virtuality described by a half-BPS and Konishi operators is calculated analytically in maximally supersymmetric Yang-Mills theory. We verify the ultraviolet behaviour of the unprotected composite operator and exponentiation of the infrared divergences with correct universal values of the anomalous dimensions in the modified dimensional reduction scheme. The amplitude is found to contain lower transcendental weight terms in addition to the highest ones and the latter has no similarity with similar amplitudes in QCD.

Keywords

Scattering Amplitudes Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

13130_2019_10527_MOESM1_ESM.tgz (188 kb)
ESM 1 (TGZ 187 kb)

References

  1. [1]
    C.-N. Yang and R.L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev. 96 (1954) 191 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form Factors in N = 4 Super Yang-Mills and Periodic Wilson Loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    L.V. Bork, D.I. Kazakov and G.S. Vartanov, On form factors in N = 4 SYM, JHEP 02 (2011) 063 [arXiv:1011.2440] [INSPIRE].
  6. [6]
    L.V. Bork, D.I. Kazakov and G.S. Vartanov, On MHV Form Factors in Superspace for \ = 4 SYM Theory, JHEP 10 (2011) 133 [arXiv:1107.5551] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini and G. Yang, Harmony of Super Form Factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    T. Gehrmann, J.M. Henn and T. Huber, The three-loop form factor in N = 4 super Yang-Mills, JHEP 03 (2012) 101 [arXiv:1112.4524] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM, JHEP 05 (2012) 082 [arXiv:1201.4170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R. Boels, B.A. Kniehl and G. Yang, Master integrals for the four-loop Sudakov form factor, Nucl. Phys. B 902 (2016) 387 [arXiv:1508.03717] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    T. Ahmed, P. Banerjee, P.K. Dhani, N. Rana, V. Ravindran and S. Seth, Konishi form factor at three loops in \( \mathcal{N} \) = △ supersymmetric Yang-Mills theory, Phys. Rev. D 95 (2017 085019 [arXiv:1610.05317] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    R.H. Boels, T. Huber and G. Yang, The Sudakov form factor at four loops in maximal super Yang-Mills theory, JHEP 01 (2018) 153 [arXiv:1711.08449] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    W.L. van Neerven, Infrared Behavior of On-shell Form-factors in a N = 4 Supersymmetric Yang-Mills Field Theory, Z. Phys. C 30 (1986) 595 [INSPIRE].ADSGoogle Scholar
  14. [14]
    K. Konishi, Anomalous Supersymmetry Transformation of Some Composite Operators in SQCD, Phys. Lett. 135B (1984) 439 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B. Eden, C. Schubert and E. Sokatchev, Three loop four point correlator in N = 4 SYM, Phys. Lett. B 482 (2000) 309 [hep-th/0003096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D. Anselmi, M.T. Grisaru and A. Johansen, A critical behavior of anomalous currents, electric-magnetic universality and CFT in four-dimensions, Nucl. Phys. B 491 (1997) 221 [hep-th/9601023] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Anomalous dimensions in N = 4 SYM theory at order g 4, Nucl. Phys. B 584 (2000) 216 [hep-th/0003203] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754] [hep-th/0404092] [INSPIRE].
  19. [19]
    B. Eden, C. Jarczak and E. Sokatchev, A three-loop test of the dilatation operator in N = 4 SYM, Nucl. Phys. B 712 (2005) 157 [hep-th/0409009] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Z. Bajnok and R.A. Janik, Four-loop perturbative Konishi from strings and finite size effects for multiparticle states, Nucl. Phys. B 807 (2009) 625 [arXiv:0807.0399] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Z. Bajnok, A. Hegedus, R.A. Janik and T. Lukowski, Five loop Konishi from AdS/CFT, Nucl. Phys. B 827 (2010) 426 [arXiv:0906.4062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    F. Fiamberti, A. Santambrogio, C. Sieg and D. Zanon, Wrapping at four loops in N = 4 SYM, Phys. Lett. B 666 (2008) 100 [arXiv:0712.3522] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    F. Fiamberti, A. Santambrogio, C. Sieg and D. Zanon, Anomalous dimension with wrapping at four loops in N = 4 SYM, Nucl. Phys. B 805 (2008) 231 [arXiv:0806.2095] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    V.N. Velizhanin, The four-loop anomalous dimension of the Konishi operator in N = 4 supersymmetric Yang-Mills theory, JETP Lett. 89 (2009) 6 [arXiv:0808.3832] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    B. Eden, P. Heslop, G.P. Korchemsky, V.A. Smirnov and E. Sokatchev, Five-loop Konishi in N = 4 SYM, Nucl. Phys. B 862 (2012) 123 [arXiv:1202.5733] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    D. Nandan, C. Sieg, M. Wilhelm and G. Yang, Cutting through form factors and cross sections of non-protected operators in \( \mathcal{N} \) = 4 SYM, JHEP 06 (2015) 156 [arXiv:1410.8485] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    P. Banerjee, P.K. Dhani, M. Mahakhud, V. Ravindran and S. Seth, Finite remainders of the Konishi at two loops in \( \mathcal{N} \) = 4 SYM, JHEP 05 (2017) 085 [arXiv:1612.00885] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for \( q\overline{q}^{\prime } \)V 1 V 2 → 4 leptons, JHEP 09 (2015) 128 [arXiv:1503.04812] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for ggV 1 V 2 → 4 leptons, JHEP 06 (2015) 197 [arXiv:1503.08835] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Ahmed, P. Banerjee, A. Chakraborty, P.K. Dhani and V. Ravindran, in preparation.Google Scholar
  31. [31]
    P. Banerjee, S. Borowka, P.K. Dhani, T. Gehrmann and V. Ravindran, Two-loop massless QCD corrections to the g + gH + H four-point amplitude, JHEP 11 (2018) 130 [arXiv:1809.05388] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A.A. H et al., Two-loop QCD corrections to b + \( \overline{b} \)H + H amplitude, arXiv:1811.01853 [INSPIRE].
  33. [33]
    Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two loop QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 [hep-ph/0202271] [INSPIRE].
  35. [35]
    W. Siegel, Supersymmetric Dimensional Regularization via Dimensional Reduction, Phys. Lett. 84B (1979) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    D.M. Capper, D.R.T. Jones and P. van Nieuwenhuizen, Regularization by Dimensional Reduction of Supersymmetric and Nonsupersymmetric Gauge Theories, Nucl. Phys. B 167 (1980) 479 [INSPIRE].
  37. [37]
    G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
  38. [38]
    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    S.G. Naculich, H. Nastase and H.J. Schnitzer, Subleading-color contributions to gluon-gluon scattering in N = 4 SYM theory and relations to N = 8 supergravity, JHEP 11 (2008) 018 [arXiv:0809.0376] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    B. Eden, Three-loop universal structure constants in N = 4 SUSY Yang-Mills theory, arXiv:1207.3112 [INSPIRE].
  42. [42]
    J. Drummond, C. Duhr, B. Eden, P. Heslop, J. Pennington and V.A. Smirnov, Leading singularities and off-shell conformal integrals, JHEP 08 (2013) 133 [arXiv:1303.6909] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    B. Basso, V. Gonçalves, S. Komatsu and P. Vieira, Gluing Hexagons at Three Loops, Nucl. Phys. B 907 (2016) 695 [arXiv:1510.01683] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    V. Gonçalves, Extracting OPE coefficient of Konishi at four loops, JHEP 03 (2017) 079 [arXiv:1607.02195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    J.M. Drummond and J.M. Henn, Simple loop integrals and amplitudes in N = 4 SYM, JHEP 05 (2011) 105 [arXiv:1008.2965] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    J.M. Drummond, J.M. Henn and J. Trnka, New differential equations for on-shell loop integrals, JHEP 04 (2011) 083 [arXiv:1010.3679] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [INSPIRE].
  49. [49]
    S.G. Naculich, H. Nastase and H.J. Schnitzer, Two-loop graviton scattering relation and IR behavior in N = 8 supergravity, Nucl. Phys. B 805 (2008) 40 [arXiv:0805.2347] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    A. Brandhuber, P. Heslop, A. Nasti, B. Spence and G. Travaglini, Four-point Amplitudes in N = 8 Supergravity and Wilson Loops, Nucl. Phys. B 807 (2009) 290 [arXiv:0805.2763] [INSPIRE].
  51. [51]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].
  52. [52]
    F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, Supergravity Theories and the Dual Spinor Model, Nucl. Phys. B 122 (1977) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D.R.T. Jones, Charge Renormalization in a Supersymmetric Yang-Mills Theory, Phys. Lett. 72B (1977) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    E.C. Poggio and H.N. Pendleton, Vanishing of Charge Renormalization and Anomalies in a Supersymmetric Gauge Theory, Phys. Lett. 72B (1977) 200 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    E. Bergshoeff, M. de Roo and B. de Wit, Extended Conformal Supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].
  56. [56]
    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
  57. [57]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].
  58. [58]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
  59. [59]
    E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  62. [62]
    A. von Manteuffel and C. Studerus, Reduze 2Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].
  63. [63]
    C. Studerus, Reduze-Feynman Integral Reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].
  64. [64]
    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. 100B (1981) 65 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
  67. [67]
    R.N. Lee, Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals, JHEP 07 (2008) 031 [arXiv:0804.3008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  69. [69]
    R.N. Lee and A.A. Pomeransky, Critical points and number of master integrals, JHEP 11 (2013) 165 [arXiv:1308.6676] [INSPIRE].
  70. [70]
    P. Maierhöfer, J. Usovitsch and P. Uwer, KiraA Feynman integral reduction program, Comput. Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    P. Maierhöfer and J. Usovitsch, Kira 1.2 Release Notes, arXiv:1812.01491 [INSPIRE].
  72. [72]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  73. [73]
    J.M. Henn, K. Melnikov and V.A. Smirnov, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, JHEP 05 (2014) 090 [arXiv:1402.7078] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    F. Caola, J.M. Henn, K. Melnikov and V.A. Smirnov, Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons, JHEP 09 (2014) 043 [arXiv:1404.5590] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    C.G. Papadopoulos, D. Tommasini and C. Wever, Two-loop Master Integrals with the Simplified Differential Equations approach, JHEP 01 (2015) 072 [arXiv:1409.6114] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    F. Chavez and C. Duhr, Three-mass triangle integrals and single-valued polylogarithms, JHEP 11 (2012) 114 [arXiv:1209.2722] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    C. Anastasiou et al., NNLO QCD corrections to ppγ * γ * in the large N F limit, JHEP 02 (2015) 182 [arXiv:1408.4546] [INSPIRE].
  78. [78]
  79. [79]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].ADSGoogle Scholar
  80. [80]
    Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].ADSGoogle Scholar
  81. [81]
    A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory, Nucl. Phys. B 661 (2003) 19 [Erratum ibid. B 685 (2004) 405] [hep-ph/0208220] [INSPIRE].
  82. [82]
    P. Banerjee, A. Chakraborty, P.K. Dhani, V. Ravindran and S. Seth, Second order splitting functions and infrared safe cross sections in \( \mathcal{N} \) = 4 SYM theory, JHEP 04 (2019) 058 [arXiv:1810.07672] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Max-Planck-Institut für Physik, Werner-Heisenberg-InstitutMünchenGermany
  2. 2.INFN, Sezione di FirenzeSesto FiorentinoItaly

Personalised recommendations