Advertisement

Wilson surface central charge from holographic entanglement entropy

  • John Estes
  • Darya Krym
  • Andy O’BannonEmail author
  • Brandon Robinson
  • Ronnie Rodgers
Open Access
Regular Article - Theoretical Physics
  • 46 Downloads

Abstract

We use entanglement entropy to define a central charge associated to a twodimensional defect or boundary in a conformal field theory (CFT). We present holographic calculations of this central charge for several maximally supersymmetric CFTs dual to eleven-dimensional supergravity in Anti-de Sitter space, namely the M5-brane theory with a Wilson surface defect and three-dimensional CFTs related to the M2-brane theory with a boundary. Our results for the central charge depend on a partition of N M2-branes ending on M M5-branes. For the Wilson surface, the partition specifies a representation of the gauge algebra, and we write our result for the central charge in a compact form in terms of the algebra’s Weyl vector and the representation’s highest weight vector. We explore how the central charge scales with N and M for some examples of partitions. In general the central charge does not scale as M3 or N3/2, the number of degrees of freedom of the M5- or M2-brane theory at large M or N , respectively.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence M-Theory p-branes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: A modern introduction, Cambridge University Press (2006) [INSPIRE].
  2. [2]
    P. West, Introduction to strings and branes, Cambridge University Press (2012) [INSPIRE].
  3. [3]
    A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].
  4. [4]
    E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335 [hep-th/9510135] [INSPIRE].
  5. [5]
    J. Bagger and N. Lambert, Modeling Multiple M2s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].
  6. [6]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].
  7. [7]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].
  8. [8]
    J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
  10. [10]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].
  12. [12]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].
  13. [13]
    D.M. Kaplan and J. Michelson, Zero modes for the D = 11 membrane and five-brane, Phys. Rev. D 53 (1996) 3474 [hep-th/9510053] [INSPIRE].
  14. [14]
    P.S. Howe, N.D. Lambert and P.C. West, The Selfdual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [INSPIRE].
  15. [15]
    C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].
  16. [16]
    P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for a D = 11 five-brane with the chiral field, Phys. Lett. B 398 (1997) 41 [hep-th/9701037] [INSPIRE].
  17. [17]
    I.A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for the superfive-brane of M-theory, Phys. Rev. Lett. 78 (1997) 4332 [hep-th/9701149] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].
  19. [19]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].
  21. [21]
    O.J. Ganor, Six-dimensional tensionless strings in the large N limit, Nucl. Phys. B 489 (1997) 95 [hep-th/9605201] [INSPIRE].
  22. [22]
    M. Bullimore and H.-C. Kim, The Superconformal Index of the (2, 0) Theory with Defects, JHEP 05 (2015) 048 [arXiv:1412.3872] [INSPIRE].
  23. [23]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact Half-BPS Flux Solutions in M-theory. I: Local Solutions, JHEP 08 (2008) 028 [arXiv:0806.0605] [INSPIRE].
  24. [24]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact Half-BPS Flux Solutions in M-theory II: Global solutions asymptotic to AdS 7 × S 4, JHEP 12 (2008) 044 [arXiv:0810.4647] [INSPIRE].
  25. [25]
    J. Estes, R. Feldman and D. Krym, Exact half-BPS flux solutions in M theory with D(2, 1; c ; 0)2 symmetry: Local solutions, Phys. Rev. D 87 (2013) 046008 [arXiv:1209.1845] [INSPIRE].
  26. [26]
    C. Bachas, E. D’Hoker, J. Estes and D. Krym, M-theory Solutions Invariant under D(2, 1; γ) ⊕ D(2, 1; γ), Fortsch. Phys. 62 (2014) 207 [arXiv:1312.5477] [INSPIRE].
  27. [27]
    A. Sevrin, W. Troost and A. Van Proeyen, Superconformal Algebras in Two-Dimensions with N = 4, Phys. Lett. B 208 (1988) 447 [INSPIRE].
  28. [28]
    L. Frappat, P. Sorba and A. Sciarrino, Dictionary on Lie superalgebras, hep-th/9607161 [INSPIRE].
  29. [29]
    E. D’Hoker, J. Estes, M. Gutperle, D. Krym and P. Sorba, Half-BPS supergravity solutions and superalgebras, JHEP 12 (2008) 047 [arXiv:0810.1484] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Janus solutions in M-theory, JHEP 06 (2009) 018 [arXiv:0904.3313] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    N. Bobev, K. Pilch and N.P. Warner, Supersymmetric Janus Solutions in Four Dimensions, JHEP 06 (2014) 058 [arXiv:1311.4883] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Jensen and A. O’Bannon, Holography, Entanglement Entropy and Conformal Field Theories with Boundaries or Defects, Phys. Rev. D 88 (2013) 106006 [arXiv:1309.4523] [INSPIRE].
  33. [33]
    J. Estes, K. Jensen, A. O’Bannon, E. Tsatis and T. Wrase, On Holographic Defect Entropy, JHEP 05 (2014) 084 [arXiv:1403.6475] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S.A. Gentle, M. Gutperle and C. Marasinou, Entanglement entropy of Wilson surfaces from bubbling geometries in M-theory, JHEP 08 (2015) 019 [arXiv:1506.00052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].
  36. [36]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
  37. [37]
    D.V. Fursaev, Quantum Entanglement on Boundaries, JHEP 07 (2013) 119 [arXiv:1305.2334] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    D.V. Fursaev and S.N. Solodukhin, Anomalies, entropy and boundaries, Phys. Rev. D 93 (2016) 084021 [arXiv:1601.06418] [INSPIRE].
  39. [39]
    K. Jensen and A. O’Bannon, Constraint on Defect and Boundary Renormalization Grou Flows, Phys. Rev. Lett. 116 (2016) 091601 [arXiv:1509.02160] [INSPIRE].
  40. [40]
    S.P. Kumar and D. Silvani, Holographic flows and thermodynamics of Polyakov loop impurities, JHEP 03 (2017) 107 [arXiv:1611.06033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    S.P. Kumar and D. Silvani, Entanglement of heavy quark impurities and generalized gravitational entropy, JHEP 01 (2018) 052 [arXiv:1711.01554] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    N. Kobayashi, T. Nishioka, Y. Sato and K. Watanabe, Towards a C-theorem in defect CFT, JHEP 01 (2019) 039 [arXiv:1810.06995] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    R. Rodgers, Holographic entanglement entropy from probe M-theory branes, JHEP 03 (2019) 092 [arXiv:1811.12375] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Beem, L. Rastelli and B.C. van Rees, \( \mathcal{W} \) symmetry in six dimensions, JHEP 05 (2015) 017 [arXiv:1404.1079] [INSPIRE].
  45. [45]
    C. Cordova, T.T. Dumitrescu and X. Yin, Higher Derivative Terms, Toroidal Compactification and Weyl Anomalies in Six-Dimensional (2, 0) Theories, arXiv:1505.03850 [INSPIRE].
  46. [46]
    D. Freed, J.A. Harvey, R. Minasian and G.W. Moore, Gravitational anomaly cancellation for M-theory five-branes, Adv. Theor. Math. Phys. 2 (1998) 601 [hep-th/9803205] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    J.A. Harvey, R. Minasian and G.W. Moore, NonAbelian tensor multiplet anomalies, JHEP 09 (1998) 004 [hep-th/9808060] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    K. Jensen, A. O’Bannon, B. Robinson and R. Rodgers, From the Weyl Anomaly to Entropy of Two-Dimensional Boundaries and Defects, arXiv:1812.08745 [INSPIRE].
  50. [50]
    C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys. B 546 (1999) 52 [hep-th/9901021] [INSPIRE].
  51. [51]
    M. Henningson and K. Skenderis, Weyl anomaly for Wilson surfaces, JHEP 06 (1999) 012 [hep-th/9905163] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    A. Schwimmer and S. Theisen, Entanglement Entropy, Trace Anomalies and Holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE].
  53. [53]
    M. Nozaki, T. Takayanagi and T. Ugajin, Central Charges for BCFTs and Holography, JHEP 06 (2012) 066 [arXiv:1205.1573] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    S.N. Solodukhin, Boundary terms of conformal anomaly, Phys. Lett. B 752 (2016) 131 [arXiv:1510.04566] [INSPIRE].
  55. [55]
    C. Herzog, K.-W. Huang and K. Jensen, Displacement Operators and Constraints on Boundary Central Charges, Phys. Rev. Lett. 120 (2018) 021601 [arXiv:1709.07431] [INSPIRE].
  56. [56]
    C.P. Herzog and K.-W. Huang, Boundary Conformal Field Theory and a Boundary Central Charge, JHEP 10 (2017) 189 [arXiv:1707.06224] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].
  58. [58]
    O. Lunin, 1/2-BPS states in M-theory and defects in the dual CFTs, JHEP 10 (2007) 014 [arXiv:0704.3442] [INSPIRE].
  59. [59]
    D. Marolf, Chern-Simons terms and the three notions of charge, in Quantization, gauge theory and strings. Proceedings, International Conference dedicated to the memory of Professor Efim Fradkin, Moscow, Russia, June 5-10, 2000, Vol. 1+2, pp. 312-320 (2000) [hep-th/0006117] [INSPIRE].
  60. [60]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].
  63. [63]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].
  64. [64]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].
  65. [65]
    D.S. Berman, M-theory branes and their interactions, Phys. Rept. 456 (2008) 89 [arXiv:0710.1707] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    D.S. Berman and J.A. Harvey, The Self-dual string and anomalies in the M5-brane, JHEP 11 (2004) 015 [hep-th/0408198] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    V. Niarchos and K. Siampos, Entropy of the self-dual string soliton, JHEP 07 (2012) 134 [arXiv:1206.2935] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    O. Ganor and L. Motl, Equations of the (2, 0) theory and knitted five-branes, JHEP 05 (1998) 009 [hep-th/9803108] [INSPIRE].
  69. [69]
    K.A. Intriligator, Anomaly matching and a Hopf-Wess-Zumino term in 6d, N = (2, 0) field theories, Nucl. Phys. B 581 (2000) 257 [hep-th/0001205] [INSPIRE].
  70. [70]
    F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].
  71. [71]
    V. Niarchos and K. Siampos, M2-M5 blackfold funnels, JHEP 06 (2012) 175 [arXiv:1205.1535] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in Supergravity and String Theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    R. Emparan, Blackfolds, in Black holes in higher dimensions, G.T. Horowitz ed., pp. 180-212, (2012) [arXiv:1106.2021] [INSPIRE].
  75. [75]
    J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].
  76. [76]
    D.S. Berman, M.J. Perry, E. Sezgin and D.C. Thompson, Boundary Conditions for Interacting Membranes, JHEP 04 (2010) 025 [arXiv:0912.3504] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    V. Niarchos, A Lagrangian for self-dual strings, JHEP 12 (2015) 060 [arXiv:1509.07676] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  78. [78]
    A. Basu and J.A. Harvey, The M2-M5 brane system and a generalized Nahms equation, Nucl. Phys. B 713 (2005) 136 [hep-th/0412310] [INSPIRE].
  79. [79]
    B. Haghighat, A. Iqbal, C. Kozçaz, G. Lockhart and C. Vafa, M-Strings, Commun. Math. Phys. 334 (2015) 779 [arXiv:1305.6322] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  80. [80]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    N. Hama and K. Hosomichi, Seiberg-Witten Theories on Ellipsoids, JHEP 09 (2012) 033 [arXiv:1206.6359] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].
  84. [84]
    C. Kozcaz, S. Pasquetti and N. Wyllard, A & B model approaches to surface operators and Toda theories, JHEP 08 (2010) 042 [arXiv:1004.2025] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    M. Bullimore, M. Fluder, L. Hollands and P. Richmond, The superconformal index and an elliptic algebra of surface defects, JHEP 10 (2014) 062 [arXiv:1401.3379] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    J. Gomis and B. Le Floch, M2-brane surface operators and gauge theory dualities in Toda, JHEP 04 (2016) 183 [arXiv:1407.1852] [INSPIRE].ADSzbMATHGoogle Scholar
  87. [87]
    J. Gomis, B. Le Floch, Y. Pan and W. Peelaers, Intersecting Surface Defects and Two-Dimensional CFT, Phys. Rev. D 96 (2017) 045003 [arXiv:1610.03501] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.New York City College of TechnologyCity University of New YorkBrooklynU.S.A.
  2. 2.STAG Research Centre, Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations