Modularity from monodromy

  • Thorsten SchimannekEmail author
Open Access
Regular Article - Theoretical Physics


In this note we describe a method to calculate the action of a particular Fourier-Mukai transformation on a basis of brane charges on elliptically fibered Calabi-Yau threefolds with and without a section. The Fourier-Mukai kernel is the ideal sheaf of the relative diagonal and for fibrations that admit a section this is essentially the Poincaré sheaf. We find that in this case it induces an action of the modular group on the charges of 2-branes.


D-branes F-Theory Topological Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].
  3. [3]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].
  4. [4]
    J. Gray, A.S. Haupt and A. Lukas, Topological Invariants and Fibration Structure of Complete Intersection Calabi-Yau Four-Folds, JHEP 09 (2014) 093 [arXiv:1405.2073] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    L.B. Anderson, X. Gao, J. Gray and S.-J. Lee, Fibrations in CICY Threefolds, JHEP 10 (2017) 077 [arXiv:1708.07907] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Y.-C. Huang and W. Taylor, On the prevalence of elliptic and genus one fibrations among toric hypersurface Calabi-Yau threefolds, JHEP 03 (2019) 014 [arXiv:1809.05160] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Cvetič, D. Klevers and H. Piragua, F-Theory Compactifications with Multiple U(1)-Factors: Constructing Elliptic Fibrations with Rational Sections, JHEP 06 (2013) 067 [arXiv:1303.6970] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D. Klevers, D.K. Mayorga Pena, P.-K. Oehlmann, H. Piragua and J. Reuter, F-Theory on all Toric Hypersurface Fibrations and its Higgs Branches, JHEP 01 (2015) 142 [arXiv:1408.4808] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    A.N. Schellekens and N.P. Warner, Anomalies, Characters and Strings, Nucl. Phys. B 287 (1987) 317 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A.N. Schellekens and N.P. Warner, Anomalies and modular invariance in string theory, Phys. Lett. B 177 (1986) 317 CERN-TH-4464-86 (1986).Google Scholar
  11. [11]
    A. Klemm, P. Mayr and C. Vafa, BPS states of exceptional noncritical strings, Nucl. Phys. Proc. Suppl. 58 (1997) 177 [hep-th/9607139] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    B. Haghighat, A. Iqbal, C. Kozçaz, G. Lockhart and C. Vafa, M-Strings, Commun. Math. Phys. 334 (2015) 779 [arXiv:1305.6322] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    S.-J. Lee, W. Lerche and T. Weigand, Tensionless Strings and the Weak Gravity Conjecture, JHEP 10 (2018) 164 [arXiv:1808.05958] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S.-J. Lee, W. Lerche and T. Weigand, A Stringy Test of the Scalar Weak Gravity Conjecture, Nucl. Phys. B 938 (2019) 321 [arXiv:1810.05169] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    P. Candelas, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 2., Nucl. Phys. B 429 (1994) 626 [hep-th/9403187] [INSPIRE].
  16. [16]
    S. Hosono, M.H. Saito and A. Takahashi, Holomorphic anomaly equation and BPS state counting of rational elliptic surface, Adv. Theor. Math. Phys. 3 (1999) 177 [hep-th/9901151] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S. Hosono, Counting BPS states via holomorphic anomaly equations, Fields Inst. Commun. 38 (2013) 57 [hep-th/0206206] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  18. [18]
    A. Klemm, J. Manschot and T. Wotschke, Quantum geometry of elliptic Calabi-Yau manifolds, arXiv:1205.1795 [INSPIRE].
  19. [19]
    M. Alim and E. Scheidegger, Topological Strings on Elliptic Fibrations, Commun. Num. Theor. Phys. 08 (2014) 729 [arXiv:1205.1784] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M.-x. Huang, S. Katz and A. Klemm, Topological String on elliptic CY 3-folds and the ring of Jacobi forms, JHEP 10 (2015) 125 [arXiv:1501.04891] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    G. Oberdieck and J. Shen, Curve counting on elliptic Calabi-Yau threefolds via derived categories, arXiv:1608.07073 [INSPIRE].
  23. [23]
    G. Oberdieck and A. Pixton, Holomorphic anomaly equations and the Igusa cusp form conjecture, Invent. Math. 213 (2018) 507 [arXiv:1706.10100] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    G. Oberdieck and A. Pixton, Gromov-Witten theory of elliptic fibrations: Jacobi forms and holomorphic anomaly equations, arXiv:1709.01481 [INSPIRE].
  25. [25]
    S. Katz, Elliptically fibered Calabi-Yau threefolds: mirror symmetry and Jacobi forms, in String-Math Conference, 27 June 2016 – 2 July 2016,
  26. [26]
    M. Del Zotto, J. Gu, M.-X. Huang, A.-K. Kashani-Poor, A. Klemm and G. Lockhart, Topological Strings on Singular Elliptic Calabi-Yau 3-folds and Minimal 6d SCFTs, JHEP 03 (2018) 156 [arXiv:1712.07017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Kontsevich, Homological Algebra of Mirror Symmetry, alg-geom/9411018 [INSPIRE].
  28. [28]
    D. Orlov, Equivalences of derived categories and K3 surfaces, alg-geom/9606006.
  29. [29]
    D. Huybrechts, M. Huybrechts and O.U. Press, Fourier-Mukai Transforms in Algebraic Geometry, Oxford Mathematical Monographs, Clarendon Press, (2006),
  30. [30]
    R.P. Horja, Hypergeometric functions and mirror symmetry in toric varieties, math/9912109.
  31. [31]
    D.R. Morrison, Geometric aspects of mirror symmetry, math/0007090.
  32. [32]
    B. Andreas, G. Curio, D.H. Ruipérez and S.-T. Yau, Fourier-Mukai transform and mirror symmetry for D-branes on elliptic Calabi-Yau, math/0012196.
  33. [33]
    B. Andreas and D. Hernandez Ruipérez, Fourier Mukai transforms and applications to string theory, math/0412328.
  34. [34]
    R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    P. Corvilain, T.W. Grimm and I. Valenzuela, The Swampland Distance Conjecture for Kähler moduli, arXiv:1812.07548 [INSPIRE].
  36. [36]
    D.H. Ruipérez, A. Martín and F.S. de Salas, Relative integral functors for singular fibrations and singular partners, math/0610319.
  37. [37]
    W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, (1984),
  38. [38]
    V. Braun, T.W. Grimm and J. Keitel, Complete Intersection Fibers in F-theory, JHEP 03 (2015) 125 [arXiv:1411.2615] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    P.-K. Oehlmann, J. Reuter and T. Schimannek, Mordell-Weil Torsion in the Mirror of Multi-Sections, JHEP 12 (2016) 031 [arXiv:1604.00011] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    C.F. Cota, A. Klemm and T. Schimannek, work in progress.Google Scholar
  41. [41]
    P.S. Aspinwall and M.R. Douglas, D-brane stability and monodromy, JHEP 05 (2002) 031 [hep-th/0110071] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    P.S. Aspinwall, Some navigation rules for D-brane monodromy, J. Math. Phys. 42 (2001) 5534 [hep-th/0102198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    D. Erkinger and J. Knapp, Hemisphere Partition Function and Monodromy, JHEP 05 (2017) 150 [arXiv:1704.00901] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    T. Weigand, TASI Lectures on F-theory, arXiv:1806.01854 [INSPIRE].
  45. [45]
    D.A. Cox and S. Katz, Mirror symmetry and algebraic geometry, AMS, (2000).Google Scholar
  46. [46]
    P.S. Aspinwall, D-branes on Calabi-Yau manifolds, in Progress in string theory. Proceedings, Summer School, TASI 2003, Boulder, U.S.A., June 2–27, 2003, pp. 1–152, hep-th/0403166 [INSPIRE].
  47. [47]
    H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, arXiv:0903.1463.
  48. [48]
    P.S. Aspinwall and D.R. Morrison, Nonsimply connected gauge groups and rational points on elliptic curves, JHEP 07 (1998) 012 [hep-th/9805206] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    C. Mayrhofer, D.R. Morrison, O. Till and T. Weigand, Mordell-Weil Torsion and the Global Structure of Gauge Groups in F-theory, JHEP 10 (2014) 16 [arXiv:1405.3656] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    R. Wazir, Arithmetic on Elliptic Threefolds, math/0112259.
  51. [51]
    A. Gerhardus and H. Jockers, Quantum periods of Calabi-Yau fourfolds, Nucl. Phys. B 913 (2016) 425 [arXiv:1604.05325] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    D.R. Morrison and D.S. Park, F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds, JHEP 10 (2012) 128 [arXiv:1208.2695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    M. Esole and M.J. Kang, Characteristic numbers of elliptic fibrations with non-trivial Mordell-Weil groups, arXiv:1808.07054 [INSPIRE].
  54. [54]
    X. De la Ossa, B. Florea and H. Skarke, D-branes on noncompact Calabi-Yau manifolds: k-theory and monodromy, Nucl. Phys. B 644 (2002) 170 [hep-th/0104254] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations