Advertisement

Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses

  • Juri Fiaschi
  • Michael Klasen
  • Simon MayEmail author
Open Access
Regular Article - Theoretical Physics
  • 33 Downloads

Abstract

We present a detailed study of a combined singlet-doublet fermion and triplet scalar model for dark matter. These models have only been studied separately in the past. Together, they form a simple extension of the Standard Model that can account for dark matter and explain the existence of neutrino masses, which are generated radiatively. This holds even if singlet-doublet fermions and triplet scalars never contribute simultaneously to the dark matter abundance. However, this also implies the existence of lepton flavour violating processes. In addition, this particular model allows for gauge coupling unification. The new fields are odd under a new ℤ2 symmetry to stabilise the dark matter candidate. We analyse the dark matter, neutrino mass and lepton flavour violation aspects both separately and in conjunction, exploring the viable parameter space of the model. This is done using a numerical random scan imposing successively the neutrino mass and mixing, relic density, Higgs mass, direct detection, collider and lepton flavour violation constraints. We find that dark matter in this model is fermionic for masses below about 1 TeV and scalar above. The narrow mass regions found previously for the two separate models are enlarged by their coupling. While coannihilations of the weak isospin partners are sizeable, this is not the case for fermions and scalars despite their often similar masses due to the relatively small coupling of the two sectors, imposed by the small neutrino masses. We observe a high degree of complementarity between direct detection and lepton flavour violation experiments, which should soon allow to fully probe the fermionic dark matter sector and at least partially the scalar dark matter sector.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM Neutrino Physics Discrete Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

References

  1. [1]
    M. Klasen, M. Pohl and G. Sigl, Indirect and direct search for dark matter, Prog. Part. Nucl. Phys. 85 (2015) 1 [arXiv:1507.03800] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  3. [3]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].
  4. [4]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].
  5. [5]
    M. Klasen, C.E. Yaguna and J.D. Ruiz-Alvarez, Electroweak corrections to the direct detection cross section of inert Higgs dark matter, Phys. Rev. D 87 (2013) 075025 [arXiv:1302.1657] [INSPIRE].
  6. [6]
    T. Araki, C.Q. Geng and K.I. Nagao, Dark matter in inert triplet models, Phys. Rev. D 83 (2011) 075014 [arXiv:1102.4906] [INSPIRE].
  7. [7]
    O. Fischer and J.J. van der Bij, Multi-singlet and singlet-triplet scalar dark matter, Mod. Phys. Lett. A 26 (2011) 2039 [INSPIRE].
  8. [8]
    F.-X. Josse-Michaux and E. Molinaro, Triplet scalar dark matter and leptogenesis in an inverse seesaw model of neutrino mass generation, Phys. Rev. D 87 (2013) 036007 [arXiv:1210.7202] [INSPIRE].
  9. [9]
    S. Yaser Ayazi and S.M. Firouzabadi, Footprint of triplet scalar dark matter in direct, indirect search and invisible Higgs decay, Cogent Phys. 2 (2015) 1047559 [arXiv:1501.06176].Google Scholar
  10. [10]
    N. Khan, Exploring the hyperchargeless Higgs triplet model up to the Planck scale, Eur. Phys. J. C 78 (2018) 341 [arXiv:1610.03178] [INSPIRE].
  11. [11]
    S. Esch, M. Klasen and C.E. Yaguna, Detection prospects of singlet fermionic dark matter, Phys. Rev. D 88 (2013) 075017 [arXiv:1308.0951] [INSPIRE].
  12. [12]
    M. Klasen and C.E. Yaguna, Warm and cold fermionic dark matter via freeze-in, JCAP 11 (2013) 039 [arXiv:1309.2777] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Cohen, J. Kearney, A. Pierce and D. Tucker-Smith, Singlet-doublet dark matter, Phys. Rev. D 85 (2012) 075003 [arXiv:1109.2604] [INSPIRE].
  14. [14]
    C. Cheung and D. Sanford, Simplified models of mixed dark matter, JCAP 02 (2014) 011 [arXiv:1311.5896] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    L. Calibbi, A. Mariotti and P. Tziveloglou, Singlet-doublet model: dark matter searches and LHC constraints, JHEP 10 (2015) 116 [arXiv:1505.03867] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Dedes and D. Karamitros, Doublet-triplet fermionic dark matter, Phys. Rev. D 89 (2014) 115002 [arXiv:1403.7744] [INSPIRE].
  17. [17]
    T. Hambye, F.S. Ling, L. Lopez Honorez and J. Rocher, Scalar multiplet dark matter, JHEP 07 (2009) 090 [Erratum ibid. 05 (2010) 066] [arXiv:0903.4010] [INSPIRE].
  18. [18]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  19. [19]
    D. Restrepo, O. Zapata and C.E. Yaguna, Models with radiative neutrino masses and viable dark matter candidates, JHEP 11 (2013) 011 [arXiv:1308.3655] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the d = 5 Weinberg operator at one-loop order, JHEP 07 (2012) 153 [arXiv:1204.5862] [INSPIRE].
  21. [21]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  22. [22]
    M. Klasen et al., Scalar dark matter and fermion coannihilations in the radiative seesaw model, JCAP 04 (2013) 044 [arXiv:1302.5298] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S.S.C. Law and K.L. McDonald, A class of inert N-tuplet models with radiative neutrino mass and dark matter, JHEP 09 (2013) 092 [arXiv:1305.6467] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    V. Brdar, I. Picek and B. Radovcic, Radiative neutrino mass with scotogenic scalar triplet, Phys. Lett. B 728 (2014) 198 [arXiv:1310.3183] [INSPIRE].
  25. [25]
    Y. Farzan, S. Pascoli and M.A. Schmidt, AMEND: a model explaining neutrino masses and dark matter testable at the LHC and MEG, JHEP 10 (2010) 111 [arXiv:1005.5323] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    H. Okada and Y. Orikasa, Radiative neutrino model with an inert triplet scalar, Phys. Rev. D 94 (2016) 055002 [arXiv:1512.06687] [INSPIRE].
  27. [27]
    S. Esch, M. Klasen, D.R. Lamprea and C.E. Yaguna, Lepton flavor violation and scalar dark matter in a radiative model of neutrino masses, Eur. Phys. J. C 78 (2018) 88 [arXiv:1602.05137] [INSPIRE].
  28. [28]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  29. [29]
    S. Esch, M. Klasen and C.E. Yaguna, A singlet doublet dark matter model with radiative neutrino masses, JHEP 10 (2018) 055 [arXiv:1804.03384] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C. Hagedorn, T. Ohlsson, S. Riad and M.A. Schmidt, Unification of gauge couplings in radiative neutrino mass models, JHEP 09 (2016) 111 [arXiv:1605.03986] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Staub, SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
  33. [33]
    W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
  34. [34]
    D. Barducci et al., Collider limits on new physics within MicrOMEGAs 4.3, Comput. Phys. Commun. 222 (2018) 327 [arXiv:1606.03834] [INSPIRE].
  35. [35]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  36. [36]
    XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  37. [37]
    H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  40. [40]
    U. Oberlack, private communication.Google Scholar
  41. [41]
    MEG collaboration, New constraint on the existence of the μ +e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].
  42. [42]
    A.M. Baldini et al., MEG upgrade proposal, arXiv:1301.7225 [INSPIRE].
  43. [43]
    OPAL collaboration, Search for stable and longlived massive charged particles in e + e collisions at \( \sqrt{s}=130 \) GeV to 209 GeV, Phys. Lett. B 572 (2003) 8 [hep-ex/0305031] [INSPIRE].
  44. [44]
    ATLAS collaboration, Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 068 [arXiv:1411.6795] [INSPIRE].
  45. [45]
    CMS collaboration, Search for long-lived charged particles in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 94 (2016) 112004 [arXiv:1609.08382] [INSPIRE].
  46. [46]
    SINDRUM collaboration, Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].
  47. [47]
    A. Blondel et al., Research proposal for an experiment to search for the decay μeee, arXiv:1301.6113 [INSPIRE].
  48. [48]
    BaBar collaboration, Searches for lepton flavor violation in the decays τ ±e ± γ and τ±→μ ± γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].
  49. [49]
    T. Aushev et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, Westfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Max-Planck-Institut für AstrophysikGarchingGermany

Personalised recommendations