Enhancing the discovery prospects for SUSY-like decays with a forgotten kinematic variable

  • Dipsikha Debnath
  • James S. Gainer
  • Can KilicEmail author
  • Doojin Kim
  • Konstantin T. Matchev
  • Yuan-Pao Yang
Open Access
Regular Article - Theoretical Physics


The lack of a new physics signal thus far at the Large Hadron Collider motivates us to consider how to look for challenging final states, with large Standard Model backgrounds and subtle kinematic features, such as cascade decays with compressed spectra. Adopting a benchmark SUSY-like decay topology with a four-body final state proceeding through a sequence of two-body decays via intermediate resonances, we focus our attention on the kinematic variable Δ4 which previously has been used to parameterize the boundary of the allowed four-body phase space. We highlight the advantages of using Δ4 as a discovery variable, and present an analysis suggesting that the pairing of Δ4 with another invariant mass variable leads to a significant improvement over more conventional variable choices and techniques.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Gildener, Gauge symmetry hierarchies, Phys. Rev. D 14 (1976) 1667 [INSPIRE].ADSGoogle Scholar
  2. [2]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  3. [3]
    T. Carli, Physics highlights of ATLAS and ALICE, talk given at XXXIX international Conference on High Energy Physics (ICHEP 2018), July 4–11, Seoul, South Korea (2018).Google Scholar
  4. [4]
    A. Rahatlou, Highlights from CMS and LHCb, talk given at XXXIX international Conference on High Energy Physics (ICHEP 2018), July 4–11, Seoul, South Korea (2018).Google Scholar
  5. [5]
    S.P. Martin, Compressed supersymmetry and natural neutralino dark matter from top squark-mediated annihilation to top quarks, Phys. Rev. D 75 (2007) 115005 [hep-ph/0703097] [INSPIRE].
  6. [6]
    H. Baer, A. Box, E.-K. Park and X. Tata, Implications of compressed supersymmetry for collider and dark matter searches, JHEP 08 (2007) 060 [arXiv:0707.0618] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P. Schwaller and J. Zurita, Compressed electroweakino spectra at the LHC, JHEP 03 (2014) 060 [arXiv:1312.7350] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Z. Han, G.D. Kribs, A. Martin and A. Menon, Hunting quasidegenerate Higgsinos, Phys. Rev. D 89 (2014) 075007 [arXiv:1401.1235] [INSPIRE].ADSGoogle Scholar
  9. [9]
    Z. Han and Y. Liu, MT2 to the rescueSearching for sleptons in compressed spectra at the LHC, Phys. Rev. D 92 (2015) 015010 [arXiv:1412.0618] [INSPIRE].ADSGoogle Scholar
  10. [10]
    H. An, J. Gu and L.-T. Wang, Exploring the nearly degenerate stop region with sbottom decays, JHEP 04 (2017) 084 [arXiv:1611.09868] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Konar, T. Mondal and A.K. Swain, Demystifying the compressed top squark region with kinematic variables, Phys. Rev. D 96 (2017) 095011 [arXiv:1612.03269] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Zarucki, Search for supersymmetry with a highly compressed mass spectrum in the single soft lepton channel with the CMS experiment at the LHC, PoS(EPS-HEP2017)728.
  13. [13]
    ATLAS collaboration, Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 97 (2018) 052010 [arXiv:1712.08119] [INSPIRE].
  14. [14]
    ATLAS, CMS collaboration, Search for supersymmetry with extremely compressed spectra with the ATLAS and CMS detectors, Nucl. Part. Phys. Proc. 273-275 (2016) 631 [INSPIRE].
  15. [15]
    J. Fan, M. Reece and J.T. Ruderman, Stealth supersymmetry, JHEP 11 (2011) 012 [arXiv:1105.5135] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D.S.M. Alves et al., Stops and Open image in new window : the shape of things to come, Phys. Rev. D 87 (2013) 035016 [arXiv:1205.5805] [INSPIRE].
  17. [17]
    W.S. Cho et al., Improving the sensitivity of stop searches with on-shell constrained invariant mass variables, JHEP 05 (2015) 040 [arXiv:1411.0664] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Macaluso, M. Park, D. Shih and B. Tweedie, Revealing compressed stops using high-momentum recoils, JHEP 03 (2016) 151 [arXiv:1506.07885] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    H.-C. Cheng, L. Li and Q. Qin, Second stop and sbottom searches with a stealth stop, JHEP 11 (2016) 181 [arXiv:1607.06547] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    CMS collaboration, Search for stealth supersymmetry in events with jets, either photons or leptons and low missing transverse momentum in pp collisions at 8 TeV, Phys. Lett. B 743 (2015) 503 [arXiv:1411.7255] [INSPIRE].
  21. [21]
    G. Zevi Della Porta, Compressed and Stealth SUSY searches with ATLAS and CMS, PoS(LHCP2016)155.
  22. [22]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  23. [23]
    CMS collaboration, Observation of a new boson at a mass of 125GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  24. [24]
    J. Smith, W.L. van Neerven and J.A.M. Vermaseren, The transverse mass and width of the W boson, Phys. Rev. Lett. 50 (1983) 1738 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    V.D. Barger, A.D. Martin and R.J.N. Phillips, Perpendicular ν e mass from W decay, Z. Phys. C 21 (1983) 99 [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Betancur et al., Measuring the mass, width and couplings of semi-invisible resonances with the Matrix Element Method, arXiv:1708.07641 [INSPIRE].
  27. [27]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].
  28. [28]
    A.J. Barr et al., Guide to transverse projections and mass-constraining variables, Phys. Rev. D 84 (2011) 095031 [arXiv:1105.2977] [INSPIRE].ADSGoogle Scholar
  29. [29]
    R. Mahbubani, K.T. Matchev and M. Park, Re-interpreting the oxbridge stransverse mass variable MT2 in general cases, JHEP 03 (2013) 134 [arXiv:1212.1720] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    W.S. Cho et al., On-shell constrained M 2 variables with applications to mass measurements and topology disambiguation, JHEP 08 (2014) 070 [arXiv:1401.1449] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    W.S. Cho et al., 750 GeV diphoton excess may not imply a 750 GeV resonance, Phys. Rev. Lett. 116 (2016) 151805 [arXiv:1512.06824] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    I. Hinchliffe et al., Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [INSPIRE].
  33. [33]
    H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev. D 62 (2000) 015009 [hep-ph/9907518] [INSPIRE].
  34. [34]
    I. Hinchliffe and F.E. Paige, Measurements in SUGRA models with large tan β at CERN LHC, Phys. Rev. D 61 (2000) 095011 [hep-ph/9907519] [INSPIRE].
  35. [35]
    B.C. Allanach, C.G. Lester, M.A. Parker and B.R. Webber, Measuring sparticle masses in nonuniversal string inspired models at the LHC, JHEP 09 (2000) 004 [hep-ph/0007009] [INSPIRE].
  36. [36]
    B.K. Gjelsten, D.J. Miller and P. Osland, Measurement of SUSY masses via cascade decays for SPS 1a, JHEP 12 (2004) 003 [hep-ph/0410303] [INSPIRE].
  37. [37]
    B.K. Gjelsten, D.J. Miller and P. Osland, Measurement of the gluino mass via cascade decays for SPS 1a, JHEP 06 (2005) 015 [hep-ph/0501033] [INSPIRE].
  38. [38]
    C.G. Lester, M.A. Parker and M.J. White, Determining SUSY model parameters and masses at the LHC using cross-sections, kinematic edges and other observables, JHEP 01 (2006) 080 [hep-ph/0508143] [INSPIRE].
  39. [39]
    D.J. Miller, P. Osland and A.R. Raklev, Invariant mass distributions in cascade decays, JHEP 03 (2006) 034 [hep-ph/0510356] [INSPIRE].
  40. [40]
    M. Burns, K.T. Matchev and M. Park, Using kinematic boundary lines for particle mass measurements and disambiguation in SUSY-like events with missing energy, JHEP 05 (2009) 094 [arXiv:0903.4371] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K.T. Matchev, F. Moortgat, L. Pape and M. Park, Precise reconstruction of sparticle masses without ambiguities, JHEP 08 (2009) 104 [arXiv:0906.2417] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Costanzo and D.R. Tovey, Supersymmetric particle mass measurement with invariant mass correlations, JHEP 04 (2009) 084 [arXiv:0902.2331] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    C. Lester, Mass and spin measurement techniques (for the LHC), in The dark secrets of the Terascale, T. Tait and K. Matchev eds., World Scientific, Singapore (2012).Google Scholar
  44. [44]
    P. Agrawal, C. Kilic, C. White and J.-H. Yu, Improved mass measurement using the boundary of many-body phase space, Phys. Rev. D 89 (2014) 015021 [arXiv:1308.6560] [INSPIRE].ADSGoogle Scholar
  45. [45]
    D. Kim, K.T. Matchev and M. Park, Using sorted invariant mass variables to evade combinatorial ambiguities in cascade decays, JHEP 02 (2016) 129 [arXiv:1512.02222] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    D. Debnath et al., Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events, JHEP 06 (2017) 092 [arXiv:1611.04487] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    B. Altunkaynak, C. Kilic and M.D. Klimek, Multidimensional phase space methods for mass measurements and decay topology determination, Eur. Phys. J. C 77 (2017) 61 [arXiv:1611.09764] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    D. Debnath, J.S. Gainer, D. Kim and K.T. Matchev, Edge detecting new physics the Voronoi way, EPL 114 (2016) 41001 [arXiv:1506.04141] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    D. Debnath et al., Identifying phase space boundaries with Voronoi tessellations, Eur. Phys. J. C 76 (2016) 645 [arXiv:1606.02721] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    N. Byers and C.N. Yang, Physical regions in invariant variables for n particles and the phase-space volume element, Rev. Mod. Phys. 36 (1964) 595.ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    CMS collaboration, CMS Physics: technical design report. Volume 1: detector performance and software, CERN-LHCC-2006-001 (2006).
  52. [52]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of FloridaGainesvilleU.S.A.
  2. 2.NHETC, Department of Physics and Astronomy, RutgersThe State University of NJPiscatawayU.S.A.
  3. 3.Department of Physics and AstronomyUniversity of HawaiiHonoluluU.S.A.
  4. 4.Theory Group, Department of PhysicsThe University of Texas at AustinAustinU.S.A.
  5. 5.Theoretical Physics DepartmentCERNGenevaSwitzerland
  6. 6.Department of PhysicsUniversity of ArizonaTucsonU.S.A.

Personalised recommendations