Advertisement

Symmetry protected topological phases and generalized cohomology

  • Davide GaiottoEmail author
  • Theo Johnson-Freyd
Open Access
Regular Article - Theoretical Physics
  • 31 Downloads

Abstract

We discuss the classification of SPT phases in condensed matter systems. We review Kitaev’s argument that SPT phases are classified by a generalized cohomology theory, valued in the spectrum of gapped physical systems [20, 23]. We propose a concrete description of that spectrum and of the corresponding cohomology theory. We compare our proposal to pre-existing constructions in the literature.

Keywords

Effective Field Theories Global Symmetries Topological Field Theories Topological States of Matter 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Atiyah, Topological quantum field theories, Inst. Hautes Etudes Sci. Publ. Math. 68 (1989) 175 [INSPIRE].CrossRefzbMATHGoogle Scholar
  2. [2]
    F.J. Burnell, X. Chen, L. Fidkowski and A. Vishwanath, Exactly soluble model of a three-dimensional symmetry-protected topological phase of bosons with surface topological order, Phys. Rev. B 90 (2014) 245122 [arXiv:1302.7072] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L. Bhardwaj, D. Gaiotto and A. Kapustin, State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter, JHEP 04 (2017) 096 [arXiv:1605.01640] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    X. Chen, L. Fidkowski and A. Vishwanath, Symmetry Enforced Non-Abelian Topological Order at the Surface of a Topological Insulator, Phys. Rev. B 89 (2014) 165132 [arXiv:1306.3250] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87 (2013) 155114 [arXiv:1106.4772] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    X. Chen, Z.-C. Gu and X.-G. Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization and topological order, Phys. Rev. B 82 (2010) 155138 [arXiv:1004.3835] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    X. Chen, Z.-C. Gu and X.-G. Wen, Complete classification of one-dimensional gapped quantum phases in interacting spin systems, Phys. Rev. B 84 (2011) 235128 [arXiv:1103.3323].ADSCrossRefGoogle Scholar
  8. [8]
    X. Chen, Y.-M. Lu and A. Vishwanath, Symmetry-protected topological phases from decorated domain walls, Nature Commun. 5 (2014) 3507 [arXiv:1303.4301].CrossRefGoogle Scholar
  9. [9]
    X. Chen, Z.-X. Liu and X.-G. Wen, Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations, Phys. Rev. B 84 (2011) 235141 [arXiv:1106.4752] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L. Fidkowski, X. Chen and A. Vishwanath, Non-Abelian Topological Order on the Surface of a 3D Topological Superconductor from an Exactly Solved Model, Phys. Rev. X 3 (2013) 041016 [arXiv:1305.5851] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    D.S. Freed and M.J. Hopkins, Reflection positivity and invertible topological phases, arXiv:1604.06527 [INSPIRE].
  12. [12]
    L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83 (2011) 075103 [arXiv:1008.4138].ADSCrossRefGoogle Scholar
  13. [13]
    D.S. Freed, Short-range entanglement and invertible field theories, arXiv:1406.7278 [INSPIRE].
  14. [14]
    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Z.-C. Gu and M. Levin, Effect of interactions on two-dimensional fermionic symmetry-protected topological phases with Z 2 symmetry, Phys. Rev. B 89 (2014) 201113 [arXiv:1304.4569].ADSCrossRefGoogle Scholar
  16. [16]
    Z.-C. Gu and X.-G. Wen, Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order, Phys. Rev. B 80 (2009) 155131 [arXiv:0903.1069] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Z.-C. Gu and X.-G. Wen, Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory, Phys. Rev. B 90 (2014) 115141 [arXiv:1201.2648] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    L.-Y. Hung and X.-G. Wen, Universal symmetry-protected topological invariants for symmetry-protected topological states, Phys. Rev. B 89 (2014) 075121 [arXiv:1311.5539] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Kapustin, Symmetry Protected Topological Phases, Anomalies and Cobordisms: Beyond Group Cohomology, arXiv:1403.1467 [INSPIRE].
  20. [20]
    A. Kitaev, Homotopy-theoretic approach to spt phases in action: Z 16 classification of three-dimensional superconductors, in Symmetry and Topology in Quantum Matter Workshop, Institute for Pure and Applied Mathematics, University of California, Los Angeles, California (2015) [http://www.ipam.ucla.edu/abstract/?tid=12389&pcode=STQ2015].
  21. [21]
    A.Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Usp. 44 (2001) 131.ADSCrossRefGoogle Scholar
  22. [22]
    A. Kitaev, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134 (2009) 22 [arXiv:0901.2686] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Kitaev, On the classification of short-range entangled states, talk at Simons Center, 20 June 2013 [http://scgp.stonybrook.edu/video_portal/video.php?id=2010].
  24. [24]
    A. Kock, L. Kristensen and I. Madsen, Cochain functors for general cohomology theories. I, Math. Scand. 20 (1967) 131.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Kock, L. Kristensen and I. Madsen, Cochain functors for general cohomology theories. II, Math. Scand. 20 (1967) 151.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories, arXiv:1309.4721 [INSPIRE].
  27. [27]
    A. Kapustin and R. Thorngren, Fermionic SPT phases in higher dimensions and bosonization, JHEP 10 (2017) 080 [arXiv:1701.08264] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Kapustin, R. Thorngren, A. Turzillo and Z. Wang, Fermionic Symmetry Protected Topological Phases and Cobordisms, JHEP 12 (2015) 052 [arXiv:1406.7329] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  29. [29]
    F. Pollmann, E. Berg, A.M. Turner and M. Oshikawa. Symmetry protection of topological phases in one-dimensional quantum spin systems, Phys. Rev. B 85 (2012) 075125 [arXiv:0909.4059].ADSCrossRefGoogle Scholar
  30. [30]
    G. Segal, The definition of conformal field theory, in Topology, geometry and quantum field theory, Lond. Math. Soc. Lect. Note Ser. 308 (2004) 421.Google Scholar
  31. [31]
    C. Schommer-Pries, Tori Detect Invertibility of Topological Field Theories, Geom. Topol. 22 (2018) 2713 [arXiv:1511.01772] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    A. Vishwanath and T. Senthil, Physics of three dimensional bosonic topological insulators: Surface Deconfined Criticality and Quantized Magnetoelectric Effect, Phys. Rev. X 3 (2013) 011016 [arXiv:1209.3058] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev. D 88 (2013) 045013 [arXiv:1303.1803] [INSPIRE].ADSGoogle Scholar
  34. [34]
    X.-G. Wen, Symmetry-protected topological invariants of symmetry-protected topological phases of interacting bosons and fermions, Phys. Rev. B 89 (2014) 035147 [arXiv:1301.7675] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Q.-R. Wang and Z.-C. Gu, Towards a Complete Classification of Symmetry-Protected Topological Phases for Interacting Fermions in Three Dimensions and a General Group Supercohomology Theory, Phys. Rev. X 8 (2018) 011055 [arXiv:1703.10937] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    C. Wang, C.-H. Lin and Z.-C. Gu, Interacting fermionic symmetry-protected topological phases in two dimensions, Phys. Rev. B 95 (2017) 195147 [arXiv:1610.08478] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Wang and T. Senthil, Interacting fermionic topological insulators/superconductors in three dimensions, Phys. Rev. B 89 (2014) 195124 [Erratum ibid. B 91 (2015) 239902] [arXiv:1401.1142] [INSPIRE].
  38. [38]
    C.Z. Xiong, Minimalist approach to the classification of symmetry protected topological phases, J. Phys. A 51 (2018) 445001 [arXiv:1701.00004] [INSPIRE].MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations