Advertisement

One-loop weak corrections to Higgs production

  • Valentin HirschiEmail author
  • Simone Lionetti
  • Armin Schweitzer
Open Access
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract

We compute mixed QCD-weak corrections to inclusive Higgs production at the LHC from the partonic process \( gg\to Hq\overline{q} \). We start from the UV- and IR-finite oneloop weak amplitude and consider its interference with the corresponding one-loop QCD amplitude. This contribution is a \( \mathcal{O}\left({\alpha}_s\alpha \right) \) correction to the leading-order gluon-fusion cross section, and was not numerically assessed in previous works. We also compute the cross section from the square of this weak amplitude, suppressed by \( \mathcal{O}\left({\alpha}^2\right) \). Finally, we consider contributions from the partonic process gqHq, which are one order lower in αs, as a reference for the size of terms which are not enhanced by the large gluon luminosity. We find that, given the magnitude of the uncertainties on current state-of-the-art predictions for Higgs production, all contributions computed in this work can be safely ignored, both fully inclusively and in the boosted Higgs regime. This result supports the approximate factorisation of QCD and weak corrections to that process.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

References

  1. [1]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].
  2. [2]
    B. Mistlberger, Higgs boson production at hadron colliders at N 3 LO in QCD, JHEP 05 (2018) 028 [arXiv:1802.00833] [INSPIRE].
  3. [3]
    C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].
  5. [5]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].
  6. [6]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO Computational Techniques: The Cases Hγγ and Hgg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [INSPIRE].
  7. [7]
    C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Bonetti, K. Melnikov and L. Tancredi, Three-loop mixed QCD-electroweak corrections to Higgs boson gluon fusion, Phys. Rev. D 97 (2018) 034004 [arXiv:1711.11113] [INSPIRE].
  9. [9]
    M. Bonetti, K. Melnikov and L. Tancredi, Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion, Phys. Rev. D 97 (2018) 056017 [Erratum ibid. D 97 (2018) 099906] [arXiv:1801.10403] [INSPIRE].
  10. [10]
    C. Anastasiou et al., Mixed QCD-electroweak corrections to Higgs production via gluon fusion in the small mass approximation, JHEP 03 (2019) 162 [arXiv:1811.11211] [INSPIRE].
  11. [11]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, The automation of next-to-leading order electroweak calculations, JHEP 07 (2018) 185 [arXiv:1804.10017] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [INSPIRE].
  14. [14]
    G. Somogyi, Subtraction with hadronic initial states at NLO: An NNLO-compatible scheme, JHEP 05 (2009) 016 [arXiv:0903.1218] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.V. Harlander, J. Vollinga and M.M. Weber, Gluon-Induced Weak Boson Fusion, Phys. Rev. D 77 (2008) 053010 [arXiv:0801.3355] [INSPIRE].
  16. [16]
    V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP 10 (2015) 146 [arXiv:1507.00020] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop Amplitudes, Comput. Phys. Commun. 185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    V. Hirschi and T. Peraro, Tensor integrand reduction via Laurent expansion, JHEP 06 (2016) 060 [arXiv:1604.01363] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Denner, S. Dittmaier and L. Hofer, COLLIER: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    W.-Y. Keung and F.J. Petriello, Electroweak and finite quark-mass effects on the Higgs boson transverse momentum distribution, Phys. Rev. D 80 (2009) 013007 [arXiv:0905.2775] [INSPIRE].
  24. [24]
    X. Chen, J. Cruz-Martinez, T. Gehrmann, E.W.N. Glover and M. Jaquier, NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066 [arXiv:1607.08817] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  26. [26]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  28. [28]
    G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].
  29. [29]
    R.H. Lewis, Computer Algebra System Fermat, (2019) https://home.bway.net/lewis/.
  30. [30]
    P. Maierhöfer, J. Usovitsch and P. Uwer, KiraA Feynman integral reduction program, Comput. Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].
  31. [31]
    P. Maierhöfer and J. Usovitsch, Kira 1.2 Release Notes, arXiv:1812.01491 [INSPIRE].
  32. [32]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated one loop integrals, Phys. Lett. B 302 (1993) 299 [Erratum ibid. B 318 (1993) 649] [hep-ph/9212308] [INSPIRE].
  33. [33]
    B.S. Institution, The C standard: incorporating Technical Corrigendum 1: BS ISO/IEC 9899/1999, John Wiley (2003).Google Scholar
  34. [34]
    F. Jegerlehner, Facts of life with γ 5, Eur. Phys. J. C 18 (2001) 673 [hep-th/0005255] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Valentin Hirschi
    • 1
    Email author
  • Simone Lionetti
    • 2
  • Armin Schweitzer
    • 1
  1. 1.ETH ZürichZürichSwitzerland
  2. 2.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.

Personalised recommendations