Advertisement

N3LO corrections to jet production in deep inelastic scattering using the Projection-to-Born method

  • J. Currie
  • T. Gehrmann
  • E. W. N. Glover
  • A. HussEmail author
  • J. Niehues
  • A. Vogt
Open Access
Regular Article - Theoretical Physics

Abstract

Computations of higher-order QCD corrections for processes with exclusive final states require a subtraction method for real-radiation contributions. We present the first-ever generalisation of a subtraction method for third-order (N3LO) QCD corrections. The Projection-to-Born method is used to combine inclusive N3LO coefficient functions with an exclusive second-order (NNLO) calculation for a final state with an extra jet. The input requirements, advantages, and potential applications of the method are discussed, and validations at lower orders are performed. As a test case, we compute the N3LO corrections to kinematical distributions and production rates for single-jet production in deep inelastic scattering in the laboratory frame, and compare them with data from the ZEUS experiment at HERA. The corrections are small in the central rapidity region, where they stabilize the predictions to sub per-cent level. The corrections increase substantially towards forward rapidity where large logarithmic effects are expected, thereby yielding an improved description of the data in this region.

Keywords

Deep Inelastic Scattering (Phenomenology) Jets 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Order α s4 QCD Corrections to Z and τ Decays, Phys. Rev. Lett. 101 (2008) 012002 [arXiv:0801.1821] [INSPIRE].
  2. [2]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Adler Function, Bjorken Sum Rule and the Crewther Relation to Order α s4 in a General Gauge Theory, Phys. Rev. Lett. 104 (2010) 132004 [arXiv:1001.3606] [INSPIRE].ADSGoogle Scholar
  3. [3]
    P.A. Baikov, K.G. Chetyrkin, J.H. Kühn and J. Rittinger, Complete \( \mathcal{O}\left({\alpha}_s^4\right) \) QCD Corrections to Hadronic Z-Decays, Phys. Rev. Lett. 108 (2012) 222003 [arXiv:1201.5804] [INSPIRE].
  4. [4]
    F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, On Higgs decays to hadrons and the R-ratio at N 4 LO, JHEP 08 (2017) 113 [arXiv:1707.01044] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.A.M. Vermaseren, A. Vogt and S.-O. Moch, The Third-order QCD corrections to deep-inelastic scattering by photon exchange, Nucl. Phys. B 724 (2005) 3 [hep-ph/0504242] [INSPIRE].
  6. [6]
    S.-O. Moch, J.A.M. Vermaseren and A. Vogt, Third-order QCD corrections to the charged-current structure function F 3, Nucl. Phys. B 813 (2009) 220 [arXiv:0812.4168] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  7. [7]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    B. Mistlberger, Higgs boson production at hadron colliders at N 3 LO in QCD, JHEP 05 (2018) 028 [arXiv:1802.00833] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F.A. Dreyer and A. Karlberg, Vector-Boson Fusion Higgs Production at Three Loops in QCD, Phys. Rev. Lett. 117 (2016) 072001 [arXiv:1606.00840] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B. Ruijl, T. Ueda, J.A.M. Vermaseren, J. Davies and A. Vogt, First Forcer results on deep-inelastic scattering and related quantities, PoS(LL2016)071 [arXiv:1605.08408] [INSPIRE].
  11. [11]
    J. Davies, A. Vogt, B. Ruijl, T. Ueda and J.A.M. Vermaseren, Large-N f contributions to the four-loop splitting functions in QCD, Nucl. Phys. B 915 (2017) 335 [arXiv:1610.07477] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  12. [12]
    S.-O. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Four-Loop Non-Singlet Splitting Functions in the Planar Limit and Beyond, JHEP 10 (2017) 041 [arXiv:1707.08315] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  13. [13]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through \( \mathcal{O}\left({\alpha}_s^2\right) \), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].
  15. [15]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Grazzini, NNLO predictions for the Higgs boson signal in the HWWlνlν and HZZ → 4l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [Erratum ibid. 117 (2016) 089901] [arXiv:1110.2375] [INSPIRE].
  18. [18]
    J.M. Campbell, R.K. Ellis, Y. Li and C. Williams, Predictions for diphoton production at the LHC through NNLO in QCD, JHEP 07 (2016) 148 [arXiv:1603.02663] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Grazzini, S. Kallweit and D. Rathlev, Wγ and Zγ production at the LHC in NNLO QCD, JHEP 07 (2015) 085 [arXiv:1504.01330] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through \( \mathcal{O}\left({\alpha}_S^4\right) \), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].
  22. [22]
    M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Caola, K. Melnikov and M. Schulze, Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD, Phys. Rev. D 92 (2015) 074032 [arXiv:1508.02684] [INSPIRE].ADSGoogle Scholar
  25. [25]
    X. Chen, J. Cruz-Martinez, T. Gehrmann, E.W.N. Glover and M. Jaquier, NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066 [arXiv:1607.08817] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Boughezal, C. Focke, X. Liu and F. Petriello, W-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and D.M. Walker, Next-to-Next-to-Leading-Order QCD Corrections to the Transverse Momentum Distribution of Weak Gauge Bosons, Phys. Rev. Lett. 120 (2018) 122001 [arXiv:1712.07543] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, Precise QCD predictions for the production of a Z boson in association with a hadronic jet, Phys. Rev. Lett. 117 (2016) 022001 [arXiv:1507.02850] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, The NNLO QCD corrections to Z boson production at large transverse momentum, JHEP 07 (2016) 133 [arXiv:1605.04295] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, NNLO QCD corrections for Drell-Yan p TZ and ϕ observables at the LHC, JHEP 11 (2016) 094 [arXiv:1610.01843] [INSPIRE].
  31. [31]
    R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and A. Huss, Precise predictions for the angular coefficients in Z-boson production at the LHC, JHEP 11 (2017) 003 [arXiv:1708.00008] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Boughezal et al., Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 116 (2016) 152001 [arXiv:1512.01291] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J.M. Campbell, R.K. Ellis and C. Williams, Direct Photon Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 118 (2017) 222001 [arXiv:1612.04333] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J.M. Campbell, R.K. Ellis and C. Williams, Driving missing data at the LHC: NNLO predictions for the ratio of γ + j and Z + j, Phys. Rev. D 96 (2017) 014037 [arXiv:1703.10109] [INSPIRE].ADSGoogle Scholar
  35. [35]
    F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, Phys. Lett. B 750 (2015) 407 [arXiv:1507.06257] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Gehrmann et al., W + W Production at Hadron Colliders in Next to Next to Leading Order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev and M. Wiesemann, W + W production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP 08 (2016) 140 [arXiv:1605.02716] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, W ± Z production at hadron colliders in NNLO QCD, Phys. Lett. B 761 (2016) 179 [arXiv:1604.08576] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Currie, E.W.N. Glover and J. Pires, Next-to-Next-to Leading Order QCD Predictions for Single Jet Inclusive Production at the LHC, Phys. Rev. Lett. 118 (2017) 072002 [arXiv:1611.01460] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and J. Pires, Precise predictions for dijet production at the LHC, Phys. Rev. Lett. 119 (2017) 152001 [arXiv:1705.10271] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Infrared structure of e + e → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Jet rates in electron-positron annihilation at O(α s3) in QCD, Phys. Rev. Lett. 100 (2008) 172001 [arXiv:0802.0813] [INSPIRE].
  44. [44]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, EERAD3: Event shapes and jet rates in electron-positron annihilation at order α s3, Comput. Phys. Commun. 185 (2014) 3331 [arXiv:1402.4140] [INSPIRE].ADSGoogle Scholar
  45. [45]
    T. Gehrmann, E.W.N. Glover, A. Huss, J. Niehues and H. Zhang, NNLO QCD corrections to event orientation in e + e annihilation, Phys. Lett. B 775 (2017) 185 [arXiv:1709.01097] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009) 041 [arXiv:0904.1077] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    V. Del Duca, C. Duhr, A. Kardos, G. Somogyi and Z. Trócsányi, Three-Jet Production in Electron-Positron Collisions at Next-to-Next-to-Leading Order Accuracy, Phys. Rev. Lett. 117 (2016) 152004 [arXiv:1603.08927] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    G. Abelof, R. Boughezal, X. Liu and F. Petriello, Single-inclusive jet production in electron-nucleon collisions through next-to-next-to-leading order in perturbative QCD, Phys. Lett. B 763 (2016) 52 [arXiv:1607.04921] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. Currie, T. Gehrmann and J. Niehues, Precise QCD predictions for the production of dijet final states in deep inelastic scattering, Phys. Rev. Lett. 117 (2016) 042001 [arXiv:1606.03991] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Currie, T. Gehrmann, A. Huss and J. Niehues, NNLO QCD corrections to jet production in deep inelastic scattering, JHEP 07 (2017) 018 [arXiv:1703.05977] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Cruz-Martinez, T. Gehrmann, E.W.N. Glover and A. Huss, Second-order QCD effects in Higgs boson production through vector boson fusion, Phys. Lett. B 781 (2018) 672 [arXiv:1802.02445] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Cacciari, F.A. Dreyer, A. Karlberg, G.P. Salam and G. Zanderighi, Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 115 (2015) 082002 [arXiv:1506.02660] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  54. [54]
    C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].
  55. [55]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B 612 (2005) 49 [hep-ph/0502110] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett. B 612 (2005) 36 [hep-ph/0501291] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Currie, E.W.N. Glover and S. Wells, Infrared Structure at NNLO Using Antenna Subtraction, JHEP 04 (2013) 066 [arXiv:1301.4693] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    R. Boughezal, K. Melnikov and F. Petriello, A subtraction scheme for NNLO computations, Phys. Rev. D 85 (2012) 034025 [arXiv:1111.7041] [INSPIRE].ADSGoogle Scholar
  61. [61]
    G. Somogyi and Z. Trócsányi, A Subtraction scheme for computing QCD jet cross sections at NNLO: Integrating the subtraction terms I, JHEP 08 (2008) 042 [arXiv:0807.0509] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  62. [62]
    V. Del Duca et al., Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev. D 94 (2016) 074019 [arXiv:1606.03453] [INSPIRE].ADSGoogle Scholar
  63. [63]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
  64. [64]
    R. Boughezal, C. Focke, X. Liu and F. Petriello, W-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    R. Boughezal, X. Liu and F. Petriello, N-jettiness soft function at next-to-next-to-leading order, Phys. Rev. D 91 (2015) 094035 [arXiv:1504.02540] [INSPIRE].ADSGoogle Scholar
  66. [66]
    J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N-jettiness Subtractions for NNLO QCD Calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].CrossRefGoogle Scholar
  67. [67]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [INSPIRE].
  68. [68]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].
  69. [69]
    C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: Differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].
  70. [70]
    P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, Higgs production via vector-boson fusion at NNLO in QCD, Phys. Rev. Lett. 105 (2010) 011801 [arXiv:1003.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    E.B. Zijlstra and W.L. van Neerven, Order α s2 QCD corrections to the deep inelastic proton structure functions F 2 and F L, Nucl. Phys. B 383 (1992) 525 [INSPIRE].
  72. [72]
    S.-O. Moch and J.A.M. Vermaseren, Deep inelastic structure functions at two loops, Nucl. Phys. B 573 (2000) 853 [hep-ph/9912355] [INSPIRE].
  73. [73]
    T. Figy, V. Hankele and D. Zeppenfeld, Next-to-leading order QCD corrections to Higgs plus three jet production in vector-boson fusion, JHEP 02 (2008) 076 [arXiv:0710.5621] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    B. Jäger, F. Schissler and D. Zeppenfeld, Parton-shower effects on Higgs boson production via vector-boson fusion in association with three jets, JHEP 07 (2014) 125 [arXiv:1405.6950] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  76. [76]
    A. Vogt, S.-O. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  77. [77]
    S.-O. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  78. [78]
    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].CrossRefGoogle Scholar
  79. [79]
    A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  80. [80]
    T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  81. [81]
    R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  82. [82]
    A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP 10 (2012) 047 [arXiv:1207.5779] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  83. [83]
    P. Newman and M. Wing, The Hadronic Final State at HERA, Rev. Mod. Phys. 86 (2014) 1037 [arXiv:1308.3368] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    E665 collaboration, M.R. Adams et al., First measurements of jet production rates in deep-inelastic lepton-proton scattering, Phys. Rev. Lett. 69 (1992) 1026 [INSPIRE].
  85. [85]
    E665 collaboration, M.R. Adams et al., Q 2 dependence of the average squared transverse energy of jets in deep-inelastic muon-nucleon scattering with comparison to QCD, Phys. Rev. Lett. 72 (1994) 466 [INSPIRE].
  86. [86]
    H1 collaboration, I. Abt et al., A Measurement of multi-jet rates in deep inelastic scattering at HERA, Z. Phys. C 61 (1994) 59 [INSPIRE].
  87. [87]
    ZEUS collaboration, M. Derrick et al., Measurement of α s from jet rates in deep inelastic scattering at HERA, Phys. Lett. B 363 (1995) 201 [hep-ex/9510001] [INSPIRE].
  88. [88]
    ZEUS collaboration, M. Derrick et al., Jet production in high Q 2 deep inelastic e p scattering at HERA, Z. Phys. C 67 (1995) 81 [hep-ex/9502003] [INSPIRE].
  89. [89]
    ZEUS collaboration, S. Chekanov et al., Forward jet production in deep inelastic ep scattering and low-x parton dynamics at HERA, Phys. Lett. B 632 (2006) 13 [hep-ex/0502029] [INSPIRE].
  90. [90]
    H1 collaboration, F.D. Aaron et al., Jet Production in ep Collisions at High Q 2 and Determination of α s, Eur. Phys. J. C 65 (2010) 363 [arXiv:0904.3870] [INSPIRE].
  91. [91]
    H1 collaboration, V. Andreev et al., Measurement of multijet production in ep collisions at high Q 2 and determination of the strong coupling α s, Eur. Phys. J. C 75 (2015) 65 [arXiv:1406.4709] [INSPIRE].
  92. [92]
    H1 collaboration, V. Andreev et al., Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA, Eur. Phys. J. C 77 (2017) 215 [arXiv:1611.03421] [INSPIRE].
  93. [93]
    ZEUS collaboration, S. Chekanov et al., Inclusive-jet and dijet cross-sections in deep inelastic scattering at HERA, Nucl. Phys. B 765 (2007) 1 [hep-ex/0608048] [INSPIRE].
  94. [94]
    ZEUS collaboration, H. Abramowicz et al., Inclusive dijet cross sections in neutral current deep inelastic scattering at HERA, Eur. Phys. J. C 70 (2010) 965 [arXiv:1010.6167] [INSPIRE].
  95. [95]
    T. Brodkorb and E. Mirkes, Complete \( \mathcal{O}\left({\alpha}_S^2\right) \) in deep inelastic scattering, Z. Phys. C 66 (1995) 141 [hep-ph/9402362] [INSPIRE].
  96. [96]
    D. Graudenz, Projet: Jet cross-sections in deeply inelastic electron proton scattering Version 4.1, Comput. Phys. Commun. 92 (1995) 65 [hep-ph/9408383] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    D. Graudenz, Next-to-leading order QCD corrections to jet cross-sections and jet rates in deeply inelastic electron proton scattering, Phys. Rev. D 49 (1994) 3291 [hep-ph/9307311] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    D. Graudenz, Disaster++: Version 1.0, hep-ph/9710244 [INSPIRE].
  99. [99]
    E. Mirkes and D. Zeppenfeld, Dijet production at HERA in next-to-leading order, Phys. Lett. B 380 (1996) 205 [hep-ph/9511448] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    M. Klasen, G. Kramer and B. Pötter, Inclusive jet production with virtual photons in next-to-leading order QCD, Eur. Phys. J. C 1 (1998) 261 [hep-ph/9703302] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    Z. Nagy and Z. Trócsányi, Multijet cross-sections in deep inelastic scattering at next-to-leading order, Phys. Rev. Lett. 87 (2001) 082001 [hep-ph/0104315] [INSPIRE].
  102. [102]
    H1 collaboration, V. Andreev et al., Determination of the strong coupling constant α s(m Z) in next-to-next-to-leading order QCD using H1 jet cross section measurements, Eur. Phys. J. C 77 (2017) 791 [arXiv:1709.07251] [INSPIRE].
  103. [103]
    NNPDF collaboration, R.D. Ball et al., Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
  104. [104]
    S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, New clustering algorithm for multi-jet cross-sections in e + e annihilation, Phys. Lett. B 269 (1991) 432 [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    Small x collaboration, J.R. Andersen et al., Small x phenomenology: Summary and status, Eur. Phys. J. C 35 (2004) 67 [hep-ph/0312333] [INSPIRE].
  107. [107]
    JADE collaboration, W. Bartel et al., Experimental Studies on Multi-Jet Production in e + e Annihilation at PETRA Energies, Z. Phys. C 33 (1986) 23 [INSPIRE].
  108. [108]
    J.M. Campbell, T. Neumann and C. Williams, Zγ production at NNLO including anomalous couplings, JHEP 11 (2017) 150 [arXiv:1708.02925] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.
  2. 2.Department of PhysicsUniversität ZürichZürichSwitzerland
  3. 3.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  4. 4.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolU.K.

Personalised recommendations