Holographic anisotropic background with confinement-deconfinement phase transition

  • Irina Aref’eva
  • Kristina Rannu
Open Access
Regular Article - Theoretical Physics


We present new anisotropic black brane solutions in 5D Einstein-dilaton-two-Maxwell system. The anisotropic background is specified by an arbitrary dynamical exponent ν, a nontrivial warp factor, a non-zero dilaton field, a non-zero time component of the first Maxwell field and a non-zero longitudinal magnetic component of the second Maxwell field. The blackening function supports the Van der Waals-like phase transition between small and large black holes for a suitable first Maxwell field charge. The isotropic case corresponding to ν = 1 and zero magnetic field reproduces previously known solutions. We investigate the anisotropy influence on the thermodynamic properties of our background, in particular, on the small/large black holes phase transition diagram.

We discuss applications of the model to the bottom-up holographic QCD. The RG flow interpolates between the UV section with two suppressed transversal coordinates and the IR section with the suppressed time and longitudinal coordinates due to anisotropic character of our solution. We study the temporal Wilson loops, extended in longitudinal and transversal directions, by calculating the minimal surfaces of the corresponding probing open string world-sheet in anisotropic backgrounds with various temperatures and chemical potentials. We find that dynamical wall locations depend on the orientation of the quark pairs, that gives a crossover transition line between confinement/deconfinement phases in the dual gauge theory. Instability of the background leads to the appearance of the critical points (μ ϑ,b , T ϑ,b ) depending on the orientation ϑ of quark-antiquark pairs in respect to the heavy ions collision line.


Holography and quark-gluon plasmas AdS-CFT Correspondence Gaugegravity correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    H.-T. Ding, F. Karsch and S. Mukherjee, Thermodynamics of strong-interaction matter from Lattice QCD, Int. J. Mod. Phys. E 24 (2015) 1530007 [arXiv:1504.05274] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    M.A. Stephanov, QCD phase diagram and the critical point, Prog. Theor. Phys. Suppl. 153 (2004) 139 [hep-ph/0402115] [INSPIRE].
  3. [3]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  4. [4]
    I.Ya. Aref’eva, Holographic approach to quark-gluon plasma in heavy ion collisions, Phys. Usp. 57 (2014) 527 [INSPIRE].
  5. [5]
    O. DeWolfe, S.S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, Prog. Part. Nucl. Phys. 75 (2014) 86 [arXiv:1304.7794] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Strickland, Thermalization and isotropization in heavy-ion collisions, Pramana 84 (2015) 671 [arXiv:1312.2285] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    I.Ya. Aref’eva and A.A. Golubtsova, Shock waves in Lifshitz-like spacetimes, JHEP 04 (2015) 011 [arXiv:1410.4595] [INSPIRE].
  8. [8]
    ALICE collaboration, Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Rev. Lett. 116 (2016) 222302 [arXiv:1512.06104] [INSPIRE].
  9. [9]
    S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS 5 with applications to multiplicity estimates in heavy-ion collisions, JHEP 11 (2009) 050 [arXiv:0902.4062] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L. Álvarez-Gaumé, C. Gomez, A. Sabio Vera, A. Tavanfar and M.A. Vazquez-Mozo, Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP 02 (2009) 009 [arXiv:0811.3969] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Lin and E. Shuryak, Grazing Collisions of Gravitational Shock Waves and Entropy Production in Heavy Ion Collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Asymmetric Collision of Two Shock Waves in AdS 5, JHEP 05 (2009) 060 [arXiv:0902.3046] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    I.Ya. Aref’eva, A.A. Bagrov and E.A. Guseva, Critical Formation of Trapped Surfaces in the Collision of Non-expanding Gravitational Shock Waves in de Sitter Space-Time, JHEP 12 (2009) 009 [arXiv:0905.1087] [INSPIRE].
  15. [15]
    I.Ya. Aref’eva, A.A. Bagrov and L.V. Joukovskaya, Critical Trapped Surfaces Formation in the Collision of Ultrarelativistic Charges in (A)dS, JHEP 03 (2010) 002 [arXiv:0909.1294] [INSPIRE].
  16. [16]
    Y.V. Kovchegov and S. Lin, Toward Thermalization in Heavy Ion Collisions at Strong Coupling, JHEP 03 (2010) 057 [arXiv:0911.4707] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    Y.V. Kovchegov, Shock Wave Collisions and Thermalization in AdS 5, Prog. Theor. Phys. Suppl. 187 (2011) 96 [arXiv:1011.0711] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    E. Kiritsis and A. Taliotis, Multiplicities from black-hole formation in heavy-ion collisions, JHEP 04 (2012) 065 [arXiv:1111.1931] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    I.Ya. Aref’eva, E.O. Pozdeeva and T.O. Pozdeeva, Holographic estimation of multiplicity and membranes collision in modified spaces AdS 5, Theor. Math. Phys. 176 (2013) 861 [arXiv:1401.1180] [INSPIRE].
  20. [20]
    I.Ya. Aref’eva, E.O. Pozdeeva and T.O. Pozdeeva, Potentials in modified AdS 5 spaces with a moderate increase in entropy, Theor. Math. Phys. 180 (2014) 781 [INSPIRE].
  21. [21]
    D.S. Ageev and I.Ya. Aref’eva, Holographic thermalization in a quark confining background, J. Exp. Theor. Phys. 120 (2015) 436 [arXiv:1409.7558] [INSPIRE].
  22. [22]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and Thermodynamics of 5D Dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  23. [23]
    D. Mateos and D. Trancanelli, Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its instabilities, Phys. Rev. Lett. 107 (2011) 101601 [arXiv:1105.3472] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Drag force in a strongly coupled anisotropic plasma, JHEP 08 (2012) 100 [arXiv:1202.3696] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Jet quenching in a strongly coupled anisotropic plasma, JHEP 08 (2012) 041 [arXiv:1203.0561] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Quarkonium dissociation by anisotropy, JHEP 01 (2013) 170 [arXiv:1208.2672] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L. Patino and D. Trancanelli, Thermal photon production in a strongly coupled anisotropic plasma, JHEP 02 (2013) 154 [arXiv:1211.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Giataganas, Observables in Strongly Coupled Anisotropic Theories, PoS(Corfu2012)122 [arXiv:1306.1404] [INSPIRE].
  30. [30]
    V. Jahnke, A. Luna, L. Patiño and D. Trancanelli, More on thermal probes of a strongly coupled anisotropic plasma, JHEP 01 (2014) 149 [arXiv:1311.5513] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    I.Ya. Aref’eva, Formation time of quark-gluon plasma in heavy-ion collisions in the holographic shock wave model, Teor. Mat. Fiz. 184 (2015) 398 [arXiv:1503.02185] [INSPIRE].
  32. [32]
    D. Ávila, D. Fernández, L. Patiño and D. Trancanelli, Thermodynamics of anisotropic branes, JHEP 11 (2016) 132 [arXiv:1609.02167] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    I.Ya. Aref’eva, A.A. Golubtsova and E. Gourgoulhon, Analytic black branes in Lifshitz-like backgrounds and thermalization, JHEP 09 (2016) 142 [arXiv:1601.06046] [INSPIRE].
  34. [34]
    I. Aref’eva, Multiplicity and theremalization time in heavy-ions collisions, EPJ Web Conf. 125 (2016) 01007 [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    I. Aref’eva, Holography for Heavy Ions Collisions at LHC and NICA, EPJ Web Conf. 164 (2017) 01014 [arXiv:1612.08928] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    D. Giataganas, U. Gürsoy and J.F. Pedraza, Strongly-coupled anisotropic gauge theories and holography, arXiv:1708.05691 [INSPIRE].
  37. [37]
    O. Andreev and V.I. Zakharov, Heavy-quark potentials and AdS/QCD, Phys. Rev. D 74 (2006) 025023 [hep-ph/0604204] [INSPIRE].
  38. [38]
    A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].
  39. [39]
    C.D. White, The Cornell potential from general geometries in AdS / QCD, Phys. Lett. B 652 (2007) 79 [hep-ph/0701157] [INSPIRE].
  40. [40]
    H.J. Pirner and B. Galow, Strong Equivalence of the AdS-Metric and the QCD Running Coupling, Phys. Lett. B 679 (2009) 51 [arXiv:0903.2701] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Karch, E. Katz, D.T. Son and M.A. Stephanov, On the sign of the dilaton in the soft wall models, JHEP 04 (2011) 066 [arXiv:1012.4813] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    O. Andreev, Cold Quark Matter, Quadratic Corrections and Gauge/String Duality, Phys. Rev. D 81 (2010) 087901 [arXiv:1001.4414] [INSPIRE].ADSGoogle Scholar
  43. [43]
    P. Colangelo, F. Giannuzzi and S. Nicotri, Holography, Heavy-Quark Free Energy and the QCD Phase Diagram, Phys. Rev. D 83 (2011) 035015 [arXiv:1008.3116] [INSPIRE].ADSGoogle Scholar
  44. [44]
    D. Li, S. He, M. Huang and Q.-S. Yan, Thermodynamics of deformed AdS 5 model with a positive/negative quadratic correction in graviton-dilaton system, JHEP 09 (2011) 041 [arXiv:1103.5389] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    S. He, S.-Y. Wu, Y. Yang and P.-H. Yuan, Phase Structure in a Dynamical Soft-Wall Holographic QCD Model, JHEP 04 (2013) 093 [arXiv:1301.0385] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    Y. Yang and P.-H. Yuan, Confinement-deconfinement phase transition for heavy quarks in a soft wall holographic QCD model, JHEP 12 (2015) 161 [arXiv:1506.05930] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  47. [47]
    R.-G. Cai, S. He and D. Li, A hQCD model and its phase diagram in Einstein-Maxwell-Dilaton system, JHEP 03 (2012) 033 [arXiv:1201.0820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    R.-G. Cai, S. Chakrabortty, S. He and L. Li, Some aspects of QGP phase in a hQCD model, JHEP 02 (2013) 068 [arXiv:1209.4512] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M.-W. Li, Y. Yang and P.-H. Yuan, Approaching Confinement Structure for Light Quarks in a Holographic Soft Wall QCD Model, Phys. Rev. D 96 (2017) 066013 [arXiv:1703.09184] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    O. DeWolfe, S.S. Gubser and C. Rosen, A holographic critical point, Phys. Rev. D 83 (2011) 086005 [arXiv:1012.1864] [INSPIRE].ADSGoogle Scholar
  52. [52]
    O. DeWolfe, S.S. Gubser and C. Rosen, Dynamic critical phenomena at a holographic critical point, Phys. Rev. D 84 (2011) 126014 [arXiv:1108.2029] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J. Knaute, R. Yaresko and B. Kämpfer, Holographic QCD phase diagram with critical point from Einstein-Maxwell-dilaton dynamics, Phys. Lett. B 778 (2018) 419 [arXiv:1702.06731] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    E. Brehm, Heavy Quarks in Strongly Coupled Non-Conformal Plasmas with Anisotropy, arXiv:1711.08943 [INSPIRE].
  55. [55]
    D. Dudal and S. Mahapatra, Thermal entropy of a quark-antiquark pair above and below deconfinement from a dynamical holographic QCD model, Phys. Rev. D 96 (2017) 126010 [arXiv:1708.06995] [INSPIRE].ADSGoogle Scholar
  56. [56]
    I.S. Gradshteyn and I.M. Ryzhik, The incomplete gamma functions, in Table of integrals, Series, an Products, 5-th edition, Academic Press (1994).Google Scholar
  57. [57]
    I.Y. Aref ’eva, A.A. Golubtsova and G. Policastro, Exact holographic RG flows and the A 1 × A 1 Toda chain, arXiv:1803.06764 [INSPIRE].
  58. [58]
    E. Kiritsis, W. Li and F. Nitti, Holographic RG flow and the Quantum Effective Action, Fortsch. Phys. 62 (2014) 389 [arXiv:1401.0888] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations