Dissipative hydrodynamics with higher-form symmetry

Abstract

A theory of parity-invariant dissipative fluids with q-form symmetry is formulated to first order in a derivative expansion. The fluid is anisotropic with symmetry SO(D − 1 − q) × SO(q) and carries dissolved q-dimensional charged objects that couple to a (q + 1)-form background gauge field. The case q = 1 for which the fluid carries string charge is related to magnetohydrodynamics in D = 4 spacetime dimensions. We identify q+7 parity-even independent transport coefficients at first order in derivatives for q > 1. In particular, compared to the q = 1 case under the assumption of parity and charge conjugation invariance, fluids with q > 1 are characterised by q extra transport coefficients with the physical interpretation of shear viscosity in the SO(q) sector and current resistivities. We discuss certain issues related to the existence of a hydrostatic sector for fluids with higher-form symmetry for any q ≥ 1. We extend these results in order to include an interface separating different fluid phases and study the dispersion relation of capillary waves finding clear signatures of anisotropy. The formalism developed here can be easily adapted to study hydrodynamics with multiple higher-form symmetries.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    F.M. Haehl, R. Loganayagam and M. Rangamani, The eightfold way to dissipation, Phys. Rev. Lett. 114 (2015) 201601 [arXiv:1412.1090] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    F.M. Haehl, R. Loganayagam and M. Rangamani, Adiabatic hydrodynamics: The eightfold way to dissipation, JHEP 05 (2015) 060 [arXiv:1502.00636] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    A. Jain, Theory of non-Abelian superfluid dynamics, Phys. Rev. D 95 (2017) 121701 [arXiv:1610.05797] [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    F.M. Haehl, R. Loganayagam and M. Rangamani, Topological σ-models & dissipative hydrodynamics, JHEP 04 (2016) 039 [arXiv:1511.07809] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  5. [5]

    M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, JHEP 09 (2017) 095 [arXiv:1511.03646] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    P. Glorioso, M. Crossley and H. Liu, Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current, JHEP 09 (2017) 096 [arXiv:1701.07817] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    P. Glorioso, H. Liu and S. Rajagopal, Global Anomalies, Discrete Symmetries and Hydrodynamic Effective Actions, arXiv:1710.03768 [INSPIRE].

  8. [8]

    K. Jensen, N. Pinzani-Fokeeva and A. Yarom, Dissipative hydrodynamics in superspace, arXiv:1701.07436 [INSPIRE].

  9. [9]

    F.M. Haehl, R. Loganayagam and M. Rangamani, Two roads to hydrodynamic effective actions: a comparison, arXiv:1701.07896 [INSPIRE].

  10. [10]

    J. Armas, J. Bhattacharya and N. Kundu, Surface transport in plasma-balls, JHEP 06 (2016) 015 [arXiv:1512.08514] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    P. Kovtun, Thermodynamics of polarized relativistic matter, JHEP 07 (2016) 028 [arXiv:1606.01226] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    J. Armas, J. Bhattacharya, A. Jain and N. Kundu, On the surface of superfluids, JHEP 06 (2017) 090 [arXiv:1612.08088] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    K. Jensen, Aspects of hot Galilean field theory, JHEP 04 (2015) 123 [arXiv:1411.7024] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    N. Banerjee, S. Dutta and A. Jain, Null Fluids — A New Viewpoint of Galilean Fluids, Phys. Rev. D 93 (2016) 105020 [arXiv:1509.04718] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. [15]

    A. Jain, Galilean Anomalies and Their Effect on Hydrodynamics, Phys. Rev. D 93 (2016) 065007 [arXiv:1509.05777] [INSPIRE].

  16. [16]

    N. Banerjee, S. Dutta and A. Jain, First Order Galilean Superfluid Dynamics, Phys. Rev. D 96 (2017) 065004 [arXiv:1612.01550] [INSPIRE].

  17. [17]

    D. Schubring, Dissipative String Fluids, Phys. Rev. D 91 (2015) 043518 [arXiv:1412.3135] [INSPIRE].

  18. [18]

    S. Grozdanov, D.M. Hofman and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev. D 95 (2017) 096003 [arXiv:1610.07392] [INSPIRE].

  19. [19]

    J. Hernandez and P. Kovtun, Relativistic magnetohydrodynamics, JHEP 05 (2017) 001 [arXiv:1703.08757] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    S. Grozdanov and N. Poovuttikul, Generalised global symmetries and magnetohydrodynamic waves in a strongly interacting holographic plasma, arXiv:1707.04182 [INSPIRE].

  21. [21]

    S. Grozdanov and N. Poovuttikul, Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography, Phys. Rev. D 97 (2018) 106005 [arXiv:1801.03199] [INSPIRE].

  22. [22]

    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in Supergravity and String Theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional Rotating Charged Black Holes, JHEP 04 (2011) 013 [arXiv:1012.4517] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    R. Emparan, V.E. Hubeny and M. Rangamani, Effective hydrodynamics of black D3-branes, JHEP 06 (2013) 035 [arXiv:1303.3563] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    A. Di Dato, J. Gath and A.V. Pedersen, Probing the Hydrodynamic Limit of (Super)gravity, JHEP 04 (2015) 171 [arXiv:1501.05441] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    J. Armas, J. Gath, V. Niarchos, N.A. Obers and A.V. Pedersen, Forced Fluid Dynamics from Blackfolds in General Supergravity Backgrounds, JHEP 10 (2016) 154 [arXiv:1606.09644] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    J. Armas and A. Jain, to appear.

  29. [29]

    S. Bhattacharyya, Entropy current and equilibrium partition function in fluid dynamics, JHEP 08 (2014) 165 [arXiv:1312.0220] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    S. Bhattacharyya, Entropy Current from Partition Function: One Example, JHEP 07 (2014) 139 [arXiv:1403.7639] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    L. Landau and E. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, Vol. 6, Elsevier (1987).

  32. [32]

    J. Gath and A.V. Pedersen, Viscous asymptotically flat Reissner-Nordström black branes, JHEP 03 (2014) 059 [arXiv:1302.5480] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    J. Armas, J. Gath and A.V. Pedersen, to appear.

  36. [36]

    J. Armas, J. Gath and N.A. Obers, Black Branes as Piezoelectrics, Phys. Rev. Lett. 109 (2012) 241101 [arXiv:1209.2127] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    J. Armas, J. Gath and N.A. Obers, Electroelasticity of Charged Black Branes, JHEP 10 (2013) 035 [arXiv:1307.0504] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    T. Andrade, M. Baggioli, A. Krikun and N. Poovuttikul, Pinning of longitudinal phonons in holographic spontaneous helices, JHEP 02 (2018) 085 [arXiv:1708.08306] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    L. Alberte, M. Ammon, M. Baggioli, A. Jiménez-Alba and O. Pujolàs, Holographic Phonons, Phys. Rev. Lett. 120 (2018) 171602 [arXiv:1711.03100] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Effective holographic theory of charge density waves, Phys. Rev. D 97 (2018) 086017 [arXiv:1711.06610] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jay Armas.

Additional information

ArXiv ePrint: 1803.00991

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Armas, J., Gath, J., Jain, A. et al. Dissipative hydrodynamics with higher-form symmetry. J. High Energ. Phys. 2018, 192 (2018). https://doi.org/10.1007/JHEP05(2018)192

Download citation

Keywords

  • Effective Field Theories
  • Holography and condensed matter physics (AdS/CMT)
  • Holography and quark-gluon plasmas