Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dissipative hydrodynamics with higher-form symmetry

Abstract

A theory of parity-invariant dissipative fluids with q-form symmetry is formulated to first order in a derivative expansion. The fluid is anisotropic with symmetry SO(D − 1 − q) × SO(q) and carries dissolved q-dimensional charged objects that couple to a (q + 1)-form background gauge field. The case q = 1 for which the fluid carries string charge is related to magnetohydrodynamics in D = 4 spacetime dimensions. We identify q+7 parity-even independent transport coefficients at first order in derivatives for q > 1. In particular, compared to the q = 1 case under the assumption of parity and charge conjugation invariance, fluids with q > 1 are characterised by q extra transport coefficients with the physical interpretation of shear viscosity in the SO(q) sector and current resistivities. We discuss certain issues related to the existence of a hydrostatic sector for fluids with higher-form symmetry for any q ≥ 1. We extend these results in order to include an interface separating different fluid phases and study the dispersion relation of capillary waves finding clear signatures of anisotropy. The formalism developed here can be easily adapted to study hydrodynamics with multiple higher-form symmetries.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    F.M. Haehl, R. Loganayagam and M. Rangamani, The eightfold way to dissipation, Phys. Rev. Lett. 114 (2015) 201601 [arXiv:1412.1090] [INSPIRE].

  2. [2]

    F.M. Haehl, R. Loganayagam and M. Rangamani, Adiabatic hydrodynamics: The eightfold way to dissipation, JHEP 05 (2015) 060 [arXiv:1502.00636] [INSPIRE].

  3. [3]

    A. Jain, Theory of non-Abelian superfluid dynamics, Phys. Rev. D 95 (2017) 121701 [arXiv:1610.05797] [INSPIRE].

  4. [4]

    F.M. Haehl, R. Loganayagam and M. Rangamani, Topological σ-models & dissipative hydrodynamics, JHEP 04 (2016) 039 [arXiv:1511.07809] [INSPIRE].

  5. [5]

    M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, JHEP 09 (2017) 095 [arXiv:1511.03646] [INSPIRE].

  6. [6]

    P. Glorioso, M. Crossley and H. Liu, Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current, JHEP 09 (2017) 096 [arXiv:1701.07817] [INSPIRE].

  7. [7]

    P. Glorioso, H. Liu and S. Rajagopal, Global Anomalies, Discrete Symmetries and Hydrodynamic Effective Actions, arXiv:1710.03768 [INSPIRE].

  8. [8]

    K. Jensen, N. Pinzani-Fokeeva and A. Yarom, Dissipative hydrodynamics in superspace, arXiv:1701.07436 [INSPIRE].

  9. [9]

    F.M. Haehl, R. Loganayagam and M. Rangamani, Two roads to hydrodynamic effective actions: a comparison, arXiv:1701.07896 [INSPIRE].

  10. [10]

    J. Armas, J. Bhattacharya and N. Kundu, Surface transport in plasma-balls, JHEP 06 (2016) 015 [arXiv:1512.08514] [INSPIRE].

  11. [11]

    P. Kovtun, Thermodynamics of polarized relativistic matter, JHEP 07 (2016) 028 [arXiv:1606.01226] [INSPIRE].

  12. [12]

    J. Armas, J. Bhattacharya, A. Jain and N. Kundu, On the surface of superfluids, JHEP 06 (2017) 090 [arXiv:1612.08088] [INSPIRE].

  13. [13]

    K. Jensen, Aspects of hot Galilean field theory, JHEP 04 (2015) 123 [arXiv:1411.7024] [INSPIRE].

  14. [14]

    N. Banerjee, S. Dutta and A. Jain, Null Fluids — A New Viewpoint of Galilean Fluids, Phys. Rev. D 93 (2016) 105020 [arXiv:1509.04718] [INSPIRE].

  15. [15]

    A. Jain, Galilean Anomalies and Their Effect on Hydrodynamics, Phys. Rev. D 93 (2016) 065007 [arXiv:1509.05777] [INSPIRE].

  16. [16]

    N. Banerjee, S. Dutta and A. Jain, First Order Galilean Superfluid Dynamics, Phys. Rev. D 96 (2017) 065004 [arXiv:1612.01550] [INSPIRE].

  17. [17]

    D. Schubring, Dissipative String Fluids, Phys. Rev. D 91 (2015) 043518 [arXiv:1412.3135] [INSPIRE].

  18. [18]

    S. Grozdanov, D.M. Hofman and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev. D 95 (2017) 096003 [arXiv:1610.07392] [INSPIRE].

  19. [19]

    J. Hernandez and P. Kovtun, Relativistic magnetohydrodynamics, JHEP 05 (2017) 001 [arXiv:1703.08757] [INSPIRE].

  20. [20]

    S. Grozdanov and N. Poovuttikul, Generalised global symmetries and magnetohydrodynamic waves in a strongly interacting holographic plasma, arXiv:1707.04182 [INSPIRE].

  21. [21]

    S. Grozdanov and N. Poovuttikul, Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography, Phys. Rev. D 97 (2018) 106005 [arXiv:1801.03199] [INSPIRE].

  22. [22]

    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

  23. [23]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in Supergravity and String Theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].

  24. [24]

    M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional Rotating Charged Black Holes, JHEP 04 (2011) 013 [arXiv:1012.4517] [INSPIRE].

  25. [25]

    R. Emparan, V.E. Hubeny and M. Rangamani, Effective hydrodynamics of black D3-branes, JHEP 06 (2013) 035 [arXiv:1303.3563] [INSPIRE].

  26. [26]

    A. Di Dato, J. Gath and A.V. Pedersen, Probing the Hydrodynamic Limit of (Super)gravity, JHEP 04 (2015) 171 [arXiv:1501.05441] [INSPIRE].

  27. [27]

    J. Armas, J. Gath, V. Niarchos, N.A. Obers and A.V. Pedersen, Forced Fluid Dynamics from Blackfolds in General Supergravity Backgrounds, JHEP 10 (2016) 154 [arXiv:1606.09644] [INSPIRE].

  28. [28]

    J. Armas and A. Jain, to appear.

  29. [29]

    S. Bhattacharyya, Entropy current and equilibrium partition function in fluid dynamics, JHEP 08 (2014) 165 [arXiv:1312.0220] [INSPIRE].

  30. [30]

    S. Bhattacharyya, Entropy Current from Partition Function: One Example, JHEP 07 (2014) 139 [arXiv:1403.7639] [INSPIRE].

  31. [31]

    L. Landau and E. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, Vol. 6, Elsevier (1987).

  32. [32]

    J. Gath and A.V. Pedersen, Viscous asymptotically flat Reissner-Nordström black branes, JHEP 03 (2014) 059 [arXiv:1302.5480] [INSPIRE].

  33. [33]

    D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].

  34. [34]

    P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].

  35. [35]

    J. Armas, J. Gath and A.V. Pedersen, to appear.

  36. [36]

    J. Armas, J. Gath and N.A. Obers, Black Branes as Piezoelectrics, Phys. Rev. Lett. 109 (2012) 241101 [arXiv:1209.2127] [INSPIRE].

  37. [37]

    J. Armas, J. Gath and N.A. Obers, Electroelasticity of Charged Black Branes, JHEP 10 (2013) 035 [arXiv:1307.0504] [INSPIRE].

  38. [38]

    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

  39. [39]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].

  40. [40]

    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].

  41. [41]

    T. Andrade, M. Baggioli, A. Krikun and N. Poovuttikul, Pinning of longitudinal phonons in holographic spontaneous helices, JHEP 02 (2018) 085 [arXiv:1708.08306] [INSPIRE].

  42. [42]

    L. Alberte, M. Ammon, M. Baggioli, A. Jiménez-Alba and O. Pujolàs, Holographic Phonons, Phys. Rev. Lett. 120 (2018) 171602 [arXiv:1711.03100] [INSPIRE].

  43. [43]

    A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Effective holographic theory of charge density waves, Phys. Rev. D 97 (2018) 086017 [arXiv:1711.06610] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Correspondence to Jay Armas.

Additional information

ArXiv ePrint: 1803.00991

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Armas, J., Gath, J., Jain, A. et al. Dissipative hydrodynamics with higher-form symmetry. J. High Energ. Phys. 2018, 192 (2018). https://doi.org/10.1007/JHEP05(2018)192

Download citation

Keywords

  • Effective Field Theories
  • Holography and condensed matter physics (AdS/CMT)
  • Holography and quark-gluon plasmas