Advertisement

Three-loop massive form factors: complete light-fermion and large-Nc corrections for vector, axial-vector, scalar and pseudo-scalar currents

  • Roman N. Lee
  • Alexander V. Smirnov
  • Vladimir A. Smirnov
  • Matthias Steinhauser
Open Access
Regular Article - Theoretical Physics

Abstract

We compute the three-loop QCD corrections to the massive quark form factors with external vector, axial-vector, scalar and pseudo-scalar currents. All corrections with closed loops of massless fermions are included. The non-fermionic part is computed in the large-Nc limit, where only planar Feynman diagrams contribute.

Keywords

Heavy Quark Physics Perturbative QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K.G. Chetyrkin, J.H. Kuhn and A. Kwiatkowski, QCD corrections to the e + e cross-section and the Z boson decay rate, hep-ph/9503396 [INSPIRE].
  2. [2]
    P. Mastrolia and E. Remiddi, Two loop form-factors in QED, Nucl. Phys. B 664 (2003) 341 [hep-ph/0302162] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R. Bonciani, P. Mastrolia and E. Remiddi, QED vertex form-factors at two loops, Nucl. Phys. B 676 (2004) 399 [hep-ph/0307295] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: The Vector contributions, Nucl. Phys. B 706 (2005) 245 [hep-ph/0406046] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A.H. Hoang and T. Teubner, Analytic calculation of two loop corrections to heavy quark pair production vertices induced by light quarks, Nucl. Phys. B 519 (1998) 285 [hep-ph/9707496] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Gluza, A. Mitov, S. Moch and T. Riemann, The QCD form factor of heavy quarks at NNLO, JHEP 07 (2009) 001 [arXiv:0905.1137] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Henn, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Massive three-loop form factor in the planar limit, JHEP 01 (2017) 074 [arXiv:1611.07535] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Ahmed, J.M. Henn and M. Steinhauser, High energy behaviour of form factors, JHEP 06 (2017) 125 [arXiv:1704.07846] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Ablinger et al., The Heavy Quark Form Factors at Two Loops, Phys. Rev. D 97 (2018) 094022 [arXiv:1712.09889] [INSPIRE].
  10. [10]
    R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Three-loop massive form factors: complete light-fermion corrections for the vector current, JHEP 03 (2018) 136 [arXiv:1801.08151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Mitov and S. Moch, The singular behavior of massive QCD amplitudes, JHEP 05 (2007) 001 [hep-ph/0612149] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: Axial vector contributions, Nucl. Phys. B 712 (2005) 229 [hep-ph/0412259] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber and E. Remiddi, Two-loop QCD corrections to the heavy quark form-factors: Anomaly contributions, Nucl. Phys. B 723 (2005) 91 [hep-ph/0504190] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, P. Mastrolia and E. Remiddi, Decays of scalar and pseudoscalar Higgs bosons into fermions: Two-loop QCD corrections to the Higgs-quark-antiquark amplitude, Phys. Rev. D 72 (2005) 096002 [hep-ph/0508254] [INSPIRE].
  15. [15]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop integrals for massive form factors, JHEP 12 (2016) 144 [arXiv:1611.06523] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Grozin, Heavy-quark form factors in the large β 0 limit, Eur. Phys. J. C 77 (2017) 453 [arXiv:1704.07968] [INSPIRE].
  17. [17]
    S.A. Larin, The Renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  20. [20]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].Google Scholar
  21. [21]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  22. [22]
    R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Three-loop massive form factors: complete light-fermion corrections for the vector current, JHEP 03 (2018) 136 [arXiv:1801.08151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    K. Melnikov and T. van Ritbergen, The three loop on-shell renormalization of QCD and QED, Nucl. Phys. B 591 (2000) 515 [hep-ph/0005131] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Marquard, L. Mihaila, J.H. Piclum and M. Steinhauser, Relation between the pole and the minimally subtracted mass in dimensional regularization and dimensional reduction to three-loop order, Nucl. Phys. B 773 (2007) 1 [hep-ph/0702185] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    W. Bernreuther et al., QCD corrections to static heavy quark form-factors, Phys. Rev. Lett. 95 (2005) 261802 [hep-ph/0509341] [INSPIRE].
  26. [26]
    A.G. Grozin, P. Marquard, J.H. Piclum and M. Steinhauser, Three-Loop Chromomagnetic Interaction in HQET, Nucl. Phys. B 789 (2008) 277 [arXiv:0707.1388] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Laporta and E. Remiddi, The Analytical value of the electron (g − 2) at order α 3 in QED, Phys. Lett. B 379 (1996) 283 [hep-ph/9602417] [INSPIRE].
  28. [28]
    J.P. Archambault and A. Czarnecki, Three-loop QCD corrections and b-quark decays, Phys. Rev. D 70 (2004) 074016 [hep-ph/0408021] [INSPIRE].
  29. [29]
    V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [INSPIRE].MathSciNetzbMATHGoogle Scholar
  30. [30]
    J. Frenkel and J.C. Taylor, Exponentiation of Leading Infrared Divergences in Massless Yang-Mills Theories, Nucl. Phys. B 116 (1976) 185 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A.A. Penin, High-Energy Limit of Quantum Electrodynamics beyond Sudakov Approximation, Phys. Lett. B 745 (2015) 69 [Erratum ibid. B 751 (2015) 596] [Erratum ibid. B 771 (2017) 633] [arXiv:1412.0671] [INSPIRE].
  32. [32]
    T. Liu, A.A. Penin and N. Zerf, Three-loop quark form factor at high energy: the leading mass corrections, Phys. Lett. B 771 (2017) 492 [arXiv:1705.07910] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Liu and A.A. Penin, High-Energy Limit of QCD beyond the Sudakov Approximation, Phys. Rev. Lett. 119 (2017) 262001 [arXiv:1709.01092] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, Heavy quark current correlators to O(α S2), Nucl. Phys. B 505 (1997) 40 [hep-ph/9705254] [INSPIRE].
  35. [35]
    L.D. Landau and E.M. Lifschitz, Lehrbuch der Theoretischen Physik III, Quantenmechanik, Akademie-Verlag Berlin (1988), section 36, eq. (24).Google Scholar
  36. [36]
    A. Messiah, Quantenmechanik 1, Walter de Gruyter (1991), eq. (B32/2).Google Scholar
  37. [37]
    V.S. Fadin and V.A. Khoze, Production of a pair of \( t\overline{t} \) quarks near threshold, Sov. J. Nucl. Phys. 53 (1991) 692 [INSPIRE].
  38. [38]
    A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].ADSGoogle Scholar
  40. [40]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, Three Loop Cusp Anomalous Dimension in QCD, Phys. Rev. Lett. 114 (2015) 062006 [arXiv:1409.0023] [INSPIRE].
  42. [42]
    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, JHEP 01 (2016) 140 [arXiv:1510.07803] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support, Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2000) 1 [cs/0004015] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  45. [45]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE].
  47. [47]
    D. Binosi and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Ablinger, J. Blümlein, P. Marquard, N. Rana and C. Schneider, Heavy Quark Form Factors at Three Loops in the Planar Limit, DESY-18-052 [arXiv:1804.07313] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Roman N. Lee
    • 1
  • Alexander V. Smirnov
    • 2
    • 4
  • Vladimir A. Smirnov
    • 3
  • Matthias Steinhauser
    • 4
  1. 1.Budker Institute of Nuclear PhysicsNovosibirskRussia
  2. 2.Research Computing CenterMoscow State UniversityMoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear Physics of Moscow State UniversityMoscowRussia
  4. 4.Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations