Advertisement

The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual

  • Alexei Kitaev
  • S. Josephine SuhEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We give an exposition of the SYK model with several new results. A non-local correction to the Schwarzian effective action is found. The same action is obtained by integrating out the bulk degrees of freedom in a certain variant of dilaton gravity. We also discuss general properties of out-of-time-order correlators.

Keywords

2D Gravity AdS-CFT Correspondence Black Holes Models of Quantum Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk at Kavli Institute for Theoretical Physics, Santa Barbara U.S.A. (2015), http://online.kitp.ucsb.edu/online/joint98/kitaev/.
  3. [3]
    A. Kitaev, A simple model of quantum holography, talks at Kavli Institute for Theoretical Physics, Santa Barbara U.S.A. (2015), http://online.kitp.ucsb.edu/online/entangled15/kitaev/, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.
  4. [4]
    O. Parcollet and A. Georges, Non-Fermi-liquid regime of a doped Mott insulator, Phys. Rev. B 59 (1999) 5341 [cond-mat/9806119].ADSCrossRefGoogle Scholar
  5. [5]
    A. Georges, O. Parcollet and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63 (2001) 134406 [cond-mat/0009388].
  6. [6]
    D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Sachdev, Strange metals and the AdS/CFT correspondence, J. Stat. Mech. 1011 (2010) P11022 [arXiv:1010.0682] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    T. Dray and G. ’t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys. B 253 (1985) 173 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    G. ’t Hooft, Strings From Gravity, Phys. Scripta T 15 (1987) 143.Google Scholar
  10. [10]
    G. ’t Hooft, The black hole interpretation of string theory, Nucl. Phys. B 335 (1990) 138 [INSPIRE].
  11. [11]
    G. ’t Hooft, The Scattering matrix approach for the quantum black hole: An Overview, Int. J. Mod. Phys. A 11 (1996) 4623 [gr-qc/9607022] [INSPIRE].
  12. [12]
    A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Sov. Phys. JETP 28 (1969) 1200.ADSGoogle Scholar
  13. [13]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk at Breakthrough Prize Symposium, San Francisco U.S.A. (2014), https://www.youtube.com/watch?v=OQ9qN8j7EZI.
  16. [16]
    Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A.J. Bray and M.A. Moore, Replica theory of quantum spin glasses, J. Phys. C 13 (1980) L655.ADSGoogle Scholar
  19. [19]
    J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  23. [23]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Jevicki, K. Suzuki and J. Yoon, Bi-Local Holography in the SYK Model, JHEP 07 (2016) 007 [arXiv:1603.06246] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [arXiv:1611.04650] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Jevicki and K. Suzuki, Bi-Local Holography in the SYK Model: Perturbations, JHEP 11 (2016) 046 [arXiv:1608.07567] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  27. [27]
    D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys. B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    D.J. Gross and V. Rosenhaus, A Generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    E. Witten, An SYK-like model without disorder, arXiv:1610.09758 [INSPIRE].
  33. [33]
    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    C. Peng, M. Spradlin and A. Volovich, A Supersymmetric SYK-like Tensor Model, JHEP 05 (2017) 062 [arXiv:1612.03851] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    D. Louis-Martinez and G. Kunstatter, Birkhoff’s theorem in two-dimensional dilaton gravity, Phys. Rev. D 49 (1994) 5227.ADSMathSciNetGoogle Scholar
  37. [37]
    D.J. Gross and V. Rosenhaus, The Bulk Dual of SYK: Cubic Couplings, JHEP 05 (2017) 092 [arXiv:1702.08016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Kitaev, Notes on \( \tilde{\mathrm{SL}}\left(2,\ \mathrm{\mathbb{R}}\right) \) representations, arXiv:1711.08169 [INSPIRE].
  39. [39]
    J. Repka, Tensor products of unitary representations of SL2(ℝ), Bull. Amer. Math. Soc. 82 (1976) 930.MathSciNetCrossRefGoogle Scholar
  40. [40]
    J. Repka, Tensor products of unitary representations of SL2(ℝ), Am. J. Math. 100 (1978) 747.MathSciNetCrossRefGoogle Scholar
  41. [41]
    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    Y. Kiem, H.L. Verlinde and E.P. Verlinde, Black hole horizons and complementarity, Phys. Rev. D 52 (1995) 7053 [hep-th/9502074] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  43. [43]
    J. Polchinski, Chaos in the black hole S-matrix, arXiv:1505.08108 [INSPIRE].
  44. [44]
    R.P. Feynman and F.L. Vernon, Jr., The Theory of a general quantum system interacting with a linear dissipative system, Annals Phys. 24 (1963) 118 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Jackiw, Lower dimensional gravity, Nucl. Phys. B 252 (1985) 343.ADSCrossRefGoogle Scholar
  47. [47]
    C. Teitelboim, Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett. B 126 (1983) 41.ADSCrossRefGoogle Scholar
  48. [48]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    J. Maldacena, private communication.Google Scholar
  52. [52]
    T. Banks and M. O’Loughlin, Two-dimensional quantum gravity in Minkowski space, Nucl. Phys. B 362 (1991) 649 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.California Institute of TechnologyPasadenaU.S.A.
  2. 2.University of British ColumbiaVancouverCanada

Personalised recommendations