Advertisement

Two-point functions in ABJM matrix model

  • Naotaka Kubo
  • Sanefumi MoriyamaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We introduce non-trivial two-point functions of the super Schur polynomials in the ABJM matrix model and study their exact values with the Fermi gas formalism. We find that, although defined non-trivially, these two-point functions enjoy two simple relations with the one-point functions. One of them is associated with the Littlewood-Richardson rule, while the other is more novel. With plenty of data, we also revisit the one-point functions and study how the diagonal BPS indices are split asymmetrically by the degree difference.

Keywords

Chern-Simons Theories M-Theory Matrix Models Topological Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N = 4 Super Yang-Mills Theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  7. [7]
    N. Drukker and D. Trancanelli, A Supermatrix model for N = 6 super Chern-Simons-matter theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    M. Mariño and P. Putrov, Exact Results in ABJM Theory from Topological Strings, JHEP 06 (2010) 011 [arXiv:0912.3074] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  11. [11]
    N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    H. Fuji, S. Hirano and S. Moriyama, Summing Up All Genus Free Energy of ABJM Matrix Model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    M. Hanada, M. Honda, Y. Honma, J. Nishimura, S. Shiba and Y. Yoshida, Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant, JHEP 05 (2012) 121 [arXiv:1202.5300] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].MathSciNetGoogle Scholar
  15. [15]
    F. Calvo and M. Mariño, Membrane instantons from a semiclassical TBA, JHEP 05 (2013) 006 [arXiv:1212.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact Results on the ABJM Fermi Gas, JHEP 10 (2012) 020 [arXiv:1207.4283] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P. Putrov and M. Yamazaki, Exact ABJM Partition Function from TBA, Mod. Phys. Lett. A 27 (2012) 1250200 [arXiv:1207.5066] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Effects in ABJM Theory from Fermi Gas Approach, JHEP 01 (2013) 158 [arXiv:1211.1251] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Bound States in ABJM Theory, JHEP 05 (2013) 054 [arXiv:1301.5184] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  20. [20]
    Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Y. Hatsuda, M. Honda, S. Moriyama and K. Okuyama, ABJM Wilson Loops in Arbitrary Representations, JHEP 10 (2013) 168 [arXiv:1306.4297] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Matsumoto and S. Moriyama, ABJ Fractional Brane from ABJM Wilson Loop, JHEP 03 (2014) 079 [arXiv:1310.8051] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Honda and K. Okuyama, Exact results on ABJ theory and the refined topological string, JHEP 08 (2014) 148 [arXiv:1405.3653] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact instanton expansion of the ABJM partition function, PTEP 2015 (2015) 11B104 [arXiv:1507.01678] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    M. Mariño, Localization at large N in Chern-Simons-matter theories, J. Phys. A 50 (2017) 443007 [arXiv:1608.02959] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    H. Awata, S. Hirano and M. Shigemori, The Partition Function of ABJ Theory, PTEP 2013 (2013) 053B04 [arXiv:1212.2966] [INSPIRE].
  27. [27]
    M. Honda, Direct derivation ofmirrorABJ partition function, JHEP 12 (2013) 046 [arXiv:1310.3126] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Honda, Exact relations between M2-brane theories with and without Orientifolds, JHEP 06 (2016) 123 [arXiv:1512.04335] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    S. Moriyama and T. Suyama, Orthosymplectic Chern-Simons Matrix Model and Chirality Projection, JHEP 04 (2016) 132 [arXiv:1601.03846] [INSPIRE].ADSzbMATHGoogle Scholar
  30. [30]
    S. Moriyama and T. Nosaka, Orientifold ABJM Matrix Model: Chiral Projections and Worldsheet Instantons, JHEP 06 (2016) 068 [arXiv:1603.00615] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    K. Kiyoshige and S. Moriyama, Dualities in ABJM Matrix Model from Closed String Viewpoint, JHEP 11 (2016) 096 [arXiv:1607.06414] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    A. Grassi, Y. Hatsuda and M. Mariño, Quantization conditions and functional equations in ABJ(M) theories, J. Phys. A 49 (2016) 115401 [arXiv:1410.7658] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  33. [33]
    Y. Hatsuda and K. Okuyama, Exact results for ABJ Wilson loops and open-closed duality, JHEP 10 (2016) 132 [arXiv:1603.06579] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    S. Matsuno and S. Moriyama, Giambelli Identity in Super Chern-Simons Matrix Model, J. Math. Phys. 58 (2017) 032301 [arXiv:1603.04124] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    T. Furukawa and S. Moriyama, Jacobi-Trudi Identity in Super Chern-Simons Matrix Model, arXiv:1711.04893 [INSPIRE].
  36. [36]
    S. Moriyama, S. Nakayama and T. Nosaka, Instanton Effects in Rank Deformed Superconformal Chern-Simons Theories from Topological Strings, JHEP 08 (2017) 003 [arXiv:1704.04358] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    A. Klemm, M. Mariño, M. Schiereck and M. Soroush, Aharony-Bergman-Jafferis-Maldacena Wilson loops in the Fermi gas approach, Z. Naturforsch. A 68 (2013) 178 [arXiv:1207.0611] [INSPIRE].ADSGoogle Scholar
  38. [38]
    K. Okuyama, Instanton Corrections of 1/6 BPS Wilson Loops in ABJM Theory, JHEP 09 (2016) 125 [arXiv:1607.06157] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    E. Moens, Supersymmetric Schur functions and Lie superalgebra representations, Ph.D. Thesis, Ghent University (2007) [DOI: 1854/11331].Google Scholar
  40. [40]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, Matrix model as a mirror of Chern-Simons theory, JHEP 02 (2004) 010 [hep-th/0211098] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    T. Kimura, Linking loops in ABJM and refined theory, JHEP 07 (2015) 030 [arXiv:1503.01462] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    M. Mariño, Chern-Simons theory, matrix integrals and perturbative three manifold invariants, Commun. Math. Phys. 253 (2004) 25 [hep-th/0207096] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    E.M. Moens and J. Van der Jeugt, A determinantal formula for supersymmetric Schur polynomials, J. Algebr. Combinator. 17 (2003) 283.MathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    S. Moriyama and T. Suyama, Instanton Effects in Orientifold ABJM Theory, JHEP 03 (2016) 034 [arXiv:1511.01660] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    K. Okuyama, Orientifolding of the ABJ Fermi gas, JHEP 03 (2016) 008 [arXiv:1601.03215] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    A. Grassi, J. Kallen and M. Mariño, The topological open string wavefunction, Commun. Math. Phys. 338 (2015) 533 [arXiv:1304.6097] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    G. Bonelli, A. Grassi and A. Tanzini, Quantum curves and q-deformed Painlevé equations, arXiv:1710.11603 [INSPIRE].
  49. [49]
    M. Sato, Soliton equations as dynamical systems on a infinite dimensional Grassmann manifolds (random systems and dynamical systems), RIMS Kokyuroku 439 (1981) 30.Google Scholar
  50. [50]
    T. Miwa, M. Jimbo and E. Date, Solitons: Differential equations, symmetries and infinite dimensional algebras, Cambridge Tracts in Mathematics, vol. 135, Cambridge University Press (2000).Google Scholar
  51. [51]
    A. Alexandrov, V. Kazakov, S. Leurent, Z. Tsuboi and A. Zabrodin, Classical tau-function for quantum spin chains, JHEP 09 (2013) 064 [arXiv:1112.3310] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    J. Gomis and T. Okuda, Wilson loops, geometric transitions and bubbling Calabi-Yaus, JHEP 02 (2007) 083 [hep-th/0612190] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    J. Gomis and T. Okuda, D-branes as a Bubbling Calabi-Yau, JHEP 07 (2007) 005 [arXiv:0704.3080] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    M. Honda and S. Moriyama, Instanton Effects in Orbifold ABJM Theory, JHEP 08 (2014) 091 [arXiv:1404.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Moriyama and T. Nosaka, Partition Functions of Superconformal Chern-Simons Theories from Fermi Gas Approach, JHEP 11 (2014) 164 [arXiv:1407.4268] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Moriyama and T. Nosaka, ABJM membrane instanton from a pole cancellation mechanism, Phys. Rev. D 92 (2015) 026003 [arXiv:1410.4918] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    S. Moriyama and T. Nosaka, Exact Instanton Expansion of Superconformal Chern-Simons Theories from Topological Strings, JHEP 05 (2015) 022 [arXiv:1412.6243] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    Y. Hatsuda, M. Honda and K. Okuyama, Large N non-perturbative effects in \( \mathcal{N}=4 \) superconformal Chern-Simons theories, JHEP 09 (2015) 046 [arXiv:1505.07120] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  59. [59]
    S. Moriyama, T. Nosaka and K. Yano, Superconformal Chern-Simons Theories from del Pezzo Geometries, JHEP 11 (2017) 089 [arXiv:1707.02420] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    H. Ouyang, J.-B. Wu and J.-j. Zhang, Supersymmetric Wilson loops in \( \mathcal{N}=4 \) super Chern-Simons-matter theory, JHEP 11 (2015) 213 [arXiv:1506.06192] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  61. [61]
    M. Cooke, N. Drukker and D. Trancanelli, A profusion of 1/2 BPS Wilson loops in \( \mathcal{N}=4 \) Chern-Simons-matter theories, JHEP 10 (2015) 140 [arXiv:1506.07614] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  62. [62]
    L. Griguolo, M. Leoni, A. Mauri, S. Penati and D. Seminara, Probing Wilson loops in \( \mathcal{N}=4 \) Chern-Simons-matter theories at weak coupling, Phys. Lett. B 753 (2016) 500 [arXiv:1510.08438] [INSPIRE].ADSzbMATHGoogle Scholar
  63. [63]
    M.S. Bianchi, L. Griguolo, M. Leoni, A. Mauri, S. Penati and D. Seminara, The quantum 1/2 BPS Wilson loop in \( \mathcal{N}=4 \) Chern-Simons-matter theories, JHEP 09 (2016) 009 [arXiv:1606.07058] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  64. [64]
    M. Lietti, A. Mauri, S. Penati and J.-j. Zhang, String theory duals of Wilson loops from Higgsing, JHEP 08 (2017) 030 [arXiv:1705.02322] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press (1998).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Center for Gravitational Physics, Yukawa Institute for Theoretical PhysicsKyoto UniversitySakyo-kuJapan
  2. 2.Department of Physics, Graduate School of ScienceOsaka City UniversitySumiyoshi-kuJapan
  3. 3.Osaka City University Advanced Mathematical Institute (OCAMI)Osaka City UniversitySumiyoshi-kuJapan

Personalised recommendations