Ladder limit for correlators of Wilson loops

  • Diego H. CorreaEmail author
  • Pablo Pisani
  • Alan Rios Fukelman
Open Access
Regular Article - Theoretical Physics


We study the correlator of concentric circular Wilson loops for arbitrary radii, spatial and internal space separations. For real values of the parameters specifying the dual string configuration, a typical Gross-Ooguri phase transition is observed. In addition, we explore some analytic continuation of a parameter γ that characterizes the internal space separation. This enables a ladder limit in which ladder resummation and string theory computations precisely agree in the strong coupling limit. Finally, we find a critical value of γ for which the correlator is supersymmetric and ladder diagrams can be exactly resummed for any value of the coupling constant.


AdS-CFT Correspondence Supersymmetric Gauge Theory Wilson, ’t Hooft and Polyakov loops 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and Anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. J. Gross and H. Ooguri, Aspects of large N gauge theory dynamics as seen by string theory, hep-th/9805129.
  4. [4]
    D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The Operator product expansion for Wilson loops and surfaces in the large N limit, Phys. Rev. D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    K. Zarembo, Wilson loop correlator in the AdS/CFT correspondence, hep-th/9904149.
  6. [6]
    K. Zarembo, String breaking from ladder diagrams in SYM theory, JHEP 03 (2001) 042 [hep-th/0103058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    P. Olesen and K. Zarembo, Phase transition in Wilson loop correlator from AdS/CFT correspondence, hep-th/0009210 [INSPIRE].
  8. [8]
    H. Kim, D.K. Park, S. Tamarian and H.J.W. Muller-Kirsten, Gross-Ooguri phase transition at zero and finite temperature: Two circular Wilson loop case, JHEP 03 (2001) 003 [hep-th/0101235] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Plefka and M. Staudacher, Two loops to two loops in N = 4 supersymmetric Yang-Mills theory, JHEP 09 (2001) 031 [hep-th/0108182].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    N. Drukker and B. Fiol, On the integrability of Wilson loops in AdS 5 × S 5 : Some periodic ansatze, JHEP 01 (2006) 056 [hep-th/0506058] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B.A. Burrington and L.A. Pando Zayas, Phase transitions in Wilson loop correlator from integrability in global AdS, Int. J. Mod. Phys. A 27 (2012) 1250001 [arXiv:1012.1525] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Dekel and T. Klose, Correlation function of circular Wilson loops at strong coupling, JHEP 11 (2013) 117 [arXiv:1309.3203] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Ahn, Two circular Wilson loops and marginal deformations, hep-th/0606073 [INSPIRE].
  14. [14]
    A. Armoni, M. Piai and A. Teimouri, Correlators of circular Wilson loops from holography, Phys. Rev. D 88 (2013) 066008 [arXiv:1307.7773] [INSPIRE].ADSGoogle Scholar
  15. [15]
    L. Griguolo, S. Mori, F. Nieri and D. Seminara, Correlators of Hopf Wilson loops in the AdS/CFT correspondence, Phys. Rev. D 86 (2012) 046006 [arXiv:1203.3413] [INSPIRE].
  16. [16]
    C.-Y. Liu, Wilson surface correlator in the AdS 7 /CF T 6 correspondence, JHEP 07 (2013) 009 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Ziama, Holographic calculations of euclidean Wilson loop correlator in Euclidean anti-de Sitter Space, JHEP 04 (2015) 020 [arXiv:1501.02778].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    D. Giataganas and N. Irges, On the holographic width of flux tubes, JHEP 05 (2015) 105 [arXiv:1502.05083] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Preti, D. Trancanelli, and E. Vescovi, Quark-antiquark potential in defect conformal field theory, [arXiv:1708.04884].
  20. [20]
    J. Aguilera-Damia et al., Strings in bubbling geometries and dual Wilson loop correlators, JHEP 12 (2017) 109 [arXiv:1709.03569] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S. Giombi and S. Komatsu, Exact correlators on the Wilson loop in \( \mathcal{N}=4 \) SYM: localization, defect CFT and integrability, JHEP 05 (2018) 109 [arXiv:1802.05201] [INSPIRE].
  22. [22]
    E. Sysoeva, Wilson loop and its correlators in the limit of large coupling constant, arXiv:1803.00649 [INSPIRE].
  23. [23]
    D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    D. Bykov and K. Zarembo, Ladders for Wilson Loops Beyond Leading Order, JHEP 09 (2012) 057 [arXiv:1206.7117] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J.M. Henn and T. Huber, Systematics of the cusp anomalous dimension, JHEP 11 (2012) 058 [arXiv:1207.2161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    D. Marmiroli, Resumming planar diagrams for the N = 6 ABJM cusped Wilson loop in light-cone gauge, arXiv:1211.4859 [INSPIRE].
  27. [27]
    J.M. Henn and T. Huber, The four-loop cusp anomalous dimension in \( \mathcal{N}=4 \) super Yang-Mills and analytic integration techniques for Wilson line integrals, JHEP 09 (2013) 147 [arXiv:1304.6418] [INSPIRE].
  28. [28]
    M. Bonini, L. Griguolo, M. Preti and D. Seminara, Surprises from the resummation of ladders in the ABJ(M) cusp anomalous dimension, JHEP 05 (2016) 180 [arXiv:1603.00541] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M. Kim, N. Kiryu, S. Komatsu and T. Nishimura, Structure constants of defect changing operators on the 1/2 BPS Wilson loop, JHEP 12 (2017) 055 [arXiv:1710.07325] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A. Cavaglià, N. Gromov and F. Levkovich-Maslyuk, Quantum spectral curve and structure constants in N = 4 SYM: cusps in the ladder limit, arXiv:1802.04237 [INSPIRE].
  31. [31]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    J. Erickson, G. Semenoff and K. Zarembo, Wilson loops in supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    N. Drukker and D.J. Gross, An exact prediction of N = 4 supersymmetric Yang-Mills theory for string theory, J, Math. Phys. 42 (2001) 2896 [hep-th/0010274].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M. Preti, Studies on Wilson loops, correlators and localization in supersymmetric quantum field theories, Ph.D. thesis, Parma University, Parma, Italy (2016).Google Scholar
  36. [36]
    S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on S 2 from 2d YM and matrix models, JHEP 10 (2010) 033 [arXiv:0906.1572] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Bassetto et al., Correlators of supersymmetric Wilson-loops, protected operators and matrix models in N = 4 SYM, JHEP 08 (2009) 061 [arXiv:0905.1943] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  38. [38]
    S. Giombi, V. Pestun and R. Ricci, Notes on supersymmetric Wilson loops on a two-sphere, JHEP 07 (2010) 088 [arXiv:0905.0665] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Diego H. Correa
    • 1
    Email author
  • Pablo Pisani
    • 1
  • Alan Rios Fukelman
    • 1
  1. 1.Instituto de Física La Plata, CONICETLa PlataArgentina

Personalised recommendations