Advertisement

Ladder limit for correlators of Wilson loops

  • Diego H. CorreaEmail author
  • Pablo Pisani
  • Alan Rios Fukelman
Open Access
Regular Article - Theoretical Physics

Abstract

We study the correlator of concentric circular Wilson loops for arbitrary radii, spatial and internal space separations. For real values of the parameters specifying the dual string configuration, a typical Gross-Ooguri phase transition is observed. In addition, we explore some analytic continuation of a parameter γ that characterizes the internal space separation. This enables a ladder limit in which ladder resummation and string theory computations precisely agree in the strong coupling limit. Finally, we find a critical value of γ for which the correlator is supersymmetric and ladder diagrams can be exactly resummed for any value of the coupling constant.

Keywords

AdS-CFT Correspondence Supersymmetric Gauge Theory Wilson, ’t Hooft and Polyakov loops 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and Anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. J. Gross and H. Ooguri, Aspects of large N gauge theory dynamics as seen by string theory, hep-th/9805129.
  4. [4]
    D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The Operator product expansion for Wilson loops and surfaces in the large N limit, Phys. Rev. D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    K. Zarembo, Wilson loop correlator in the AdS/CFT correspondence, hep-th/9904149.
  6. [6]
    K. Zarembo, String breaking from ladder diagrams in SYM theory, JHEP 03 (2001) 042 [hep-th/0103058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    P. Olesen and K. Zarembo, Phase transition in Wilson loop correlator from AdS/CFT correspondence, hep-th/0009210 [INSPIRE].
  8. [8]
    H. Kim, D.K. Park, S. Tamarian and H.J.W. Muller-Kirsten, Gross-Ooguri phase transition at zero and finite temperature: Two circular Wilson loop case, JHEP 03 (2001) 003 [hep-th/0101235] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Plefka and M. Staudacher, Two loops to two loops in N = 4 supersymmetric Yang-Mills theory, JHEP 09 (2001) 031 [hep-th/0108182].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    N. Drukker and B. Fiol, On the integrability of Wilson loops in AdS 5 × S 5 : Some periodic ansatze, JHEP 01 (2006) 056 [hep-th/0506058] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B.A. Burrington and L.A. Pando Zayas, Phase transitions in Wilson loop correlator from integrability in global AdS, Int. J. Mod. Phys. A 27 (2012) 1250001 [arXiv:1012.1525] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Dekel and T. Klose, Correlation function of circular Wilson loops at strong coupling, JHEP 11 (2013) 117 [arXiv:1309.3203] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Ahn, Two circular Wilson loops and marginal deformations, hep-th/0606073 [INSPIRE].
  14. [14]
    A. Armoni, M. Piai and A. Teimouri, Correlators of circular Wilson loops from holography, Phys. Rev. D 88 (2013) 066008 [arXiv:1307.7773] [INSPIRE].ADSGoogle Scholar
  15. [15]
    L. Griguolo, S. Mori, F. Nieri and D. Seminara, Correlators of Hopf Wilson loops in the AdS/CFT correspondence, Phys. Rev. D 86 (2012) 046006 [arXiv:1203.3413] [INSPIRE].
  16. [16]
    C.-Y. Liu, Wilson surface correlator in the AdS 7 /CF T 6 correspondence, JHEP 07 (2013) 009 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Ziama, Holographic calculations of euclidean Wilson loop correlator in Euclidean anti-de Sitter Space, JHEP 04 (2015) 020 [arXiv:1501.02778].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    D. Giataganas and N. Irges, On the holographic width of flux tubes, JHEP 05 (2015) 105 [arXiv:1502.05083] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Preti, D. Trancanelli, and E. Vescovi, Quark-antiquark potential in defect conformal field theory, [arXiv:1708.04884].
  20. [20]
    J. Aguilera-Damia et al., Strings in bubbling geometries and dual Wilson loop correlators, JHEP 12 (2017) 109 [arXiv:1709.03569] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S. Giombi and S. Komatsu, Exact correlators on the Wilson loop in \( \mathcal{N}=4 \) SYM: localization, defect CFT and integrability, JHEP 05 (2018) 109 [arXiv:1802.05201] [INSPIRE].
  22. [22]
    E. Sysoeva, Wilson loop and its correlators in the limit of large coupling constant, arXiv:1803.00649 [INSPIRE].
  23. [23]
    D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    D. Bykov and K. Zarembo, Ladders for Wilson Loops Beyond Leading Order, JHEP 09 (2012) 057 [arXiv:1206.7117] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J.M. Henn and T. Huber, Systematics of the cusp anomalous dimension, JHEP 11 (2012) 058 [arXiv:1207.2161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    D. Marmiroli, Resumming planar diagrams for the N = 6 ABJM cusped Wilson loop in light-cone gauge, arXiv:1211.4859 [INSPIRE].
  27. [27]
    J.M. Henn and T. Huber, The four-loop cusp anomalous dimension in \( \mathcal{N}=4 \) super Yang-Mills and analytic integration techniques for Wilson line integrals, JHEP 09 (2013) 147 [arXiv:1304.6418] [INSPIRE].
  28. [28]
    M. Bonini, L. Griguolo, M. Preti and D. Seminara, Surprises from the resummation of ladders in the ABJ(M) cusp anomalous dimension, JHEP 05 (2016) 180 [arXiv:1603.00541] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M. Kim, N. Kiryu, S. Komatsu and T. Nishimura, Structure constants of defect changing operators on the 1/2 BPS Wilson loop, JHEP 12 (2017) 055 [arXiv:1710.07325] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A. Cavaglià, N. Gromov and F. Levkovich-Maslyuk, Quantum spectral curve and structure constants in N = 4 SYM: cusps in the ladder limit, arXiv:1802.04237 [INSPIRE].
  31. [31]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    J. Erickson, G. Semenoff and K. Zarembo, Wilson loops in supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    N. Drukker and D.J. Gross, An exact prediction of N = 4 supersymmetric Yang-Mills theory for string theory, J, Math. Phys. 42 (2001) 2896 [hep-th/0010274].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M. Preti, Studies on Wilson loops, correlators and localization in supersymmetric quantum field theories, Ph.D. thesis, Parma University, Parma, Italy (2016).Google Scholar
  36. [36]
    S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on S 2 from 2d YM and matrix models, JHEP 10 (2010) 033 [arXiv:0906.1572] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Bassetto et al., Correlators of supersymmetric Wilson-loops, protected operators and matrix models in N = 4 SYM, JHEP 08 (2009) 061 [arXiv:0905.1943] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  38. [38]
    S. Giombi, V. Pestun and R. Ricci, Notes on supersymmetric Wilson loops on a two-sphere, JHEP 07 (2010) 088 [arXiv:0905.0665] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Diego H. Correa
    • 1
    Email author
  • Pablo Pisani
    • 1
  • Alan Rios Fukelman
    • 1
  1. 1.Instituto de Física La Plata, CONICETLa PlataArgentina

Personalised recommendations