Advertisement

Entanglement entropy in (1+1)D CFTs with multiple local excitations

  • Wu-zhong Guo
  • Song HeEmail author
  • Zhu-Xi Luo
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper, we use the replica approach to study the Rényi entropy SL of generic locally excited states in (1+1)D CFTs, which are constructed from the insertion of multiple product of local primary operators on vacuum. Alternatively, one can calculate the Rényi entropy SR corresponding to the same states using Schmidt decomposition and operator product expansion, which reduces the multiple product of local primary operators to linear combination of operators. The equivalence SL = SR translates into an identity in terms of the F symbols and quantum dimensions for rational CFT, and the latter can be proved algebraically. This, along with a series of papers, gives a complete picture of how the quantum information quantities and the intrinsic structure of (1+1)D CFTs are consistently related.

Keywords

Conformal Field Theory Anyons Field Theories in Lower Dimensions Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49 [arXiv:1411.0690] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038 [arXiv:1605.08072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A General Proof of the Quantum Null Energy Condition, arXiv:1706.09432 [INSPIRE].
  7. [7]
    H. Casini, I.S. Landea and G. Torroba, The g-theorem and quantum information theory, JHEP 10 (2016) 140 [arXiv:1607.00390] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Lashkari, A. Dymarsky and H. Liu, Eigenstate Thermalization Hypothesis in Conformal Field Theory, J. Stat. Mech. 1803 (2018) 033101 [arXiv:1610.00302] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    F.-L. Lin, H. Wang and J.-j. Zhang, Thermality and excited state Rényi entropy in two-dimensional CFT, JHEP 11 (2016) 116 [arXiv:1610.01362] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. He, F.-L. Lin and J.-j. Zhang, Subsystem eigenstate thermalization hypothesis for entanglement entropy in CFT, JHEP 08 (2017) 126 [arXiv:1703.08724] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. He, F.-L. Lin and J.-j. Zhang, Dissimilarities of reduced density matrices and eigenstate thermalization hypothesis, JHEP 12 (2017) 073 [arXiv:1708.05090] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    N. Lashkari, A. Dymarsky and H. Liu, Universality of Quantum Information in Chaotic CFTs, JHEP 03 (2018) 070 [arXiv:1710.10458] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Faulkner and H. Wang, Probing beyond ETH at large c, arXiv:1712.03464 [INSPIRE].
  14. [14]
    S. He, T. Numasawa, T. Takayanagi and K. Watanabe, Quantum dimension as entanglement entropy in two dimensional conformal field theories, Phys. Rev. D 90 (2014) 041701 [arXiv:1403.0702] [INSPIRE].ADSGoogle Scholar
  15. [15]
    W.-Z. Guo and S. He, Rényi entropy of locally excited states with thermal and boundary effect in 2D CFTs, JHEP 04 (2015) 099 [arXiv:1501.00757] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Chen, W.-Z. Guo, S. He and J.-q. Wu, Entanglement Entropy for Descendent Local Operators in 2D CFTs, JHEP 10 (2015) 173 [arXiv:1507.01157] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Nozaki, T. Numasawa and S. Matsuura, Quantum Entanglement of Fermionic Local Operators, JHEP 02 (2016) 150 [arXiv:1507.04352] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Nozaki and N. Watamura, Quantum Entanglement of Locally Excited States in Maxwell Theory, JHEP 12 (2016) 069 [arXiv:1606.07076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J.R. David, S. Khetrapal and S.P. Kumar, Universal corrections to entanglement entropy of local quantum quenches, JHEP 08 (2016) 127 [arXiv:1605.05987] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Zhou, Entanglement Entropy of Local Operators in Quantum Lifshitz Theory, J. Stat. Mech. 1609 (2016) 093106 [arXiv:1607.08631] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  21. [21]
    P. Caputa and M.M. Rams, Quantum dimensions from local operator excitations in the Ising model, J. Phys. A 50 (2017) 055002 [arXiv:1609.02428] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  22. [22]
    P. Caputa and A. Veliz-Osorio, Entanglement constant for conformal families, Phys. Rev. D 92 (2015) 065010 [arXiv:1507.00582] [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Numasawa, Scattering effect on entanglement propagation in RCFTs, JHEP 12 (2016) 061 [arXiv:1610.06181] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    P. Caputa, Y. Kusuki, T. Takayanagi and K. Watanabe, Evolution of Entanglement Entropy in Orbifold CFTs, J. Phys. A 50 (2017) 244001 [arXiv:1701.03110] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  25. [25]
    A. Jahn and T. Takayanagi, Holographic entanglement entropy of local quenches in AdS 4 /CFT 3 : a finite-element approach, J. Phys. A 51 (2018) 015401 [arXiv:1705.04705] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and Entanglement Density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    P. Caputa, M. Nozaki and T. Takayanagi, Entanglement of local operators in large-N conformal field theories, PTEP 2014 (2014) 093B06 [arXiv:1405.5946] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy from 2d CFT: Heavy States and Local Quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    W.-Z. Guo and F.-L. Lin, Quantum Energy Teleportation in Two-dimensional Conformal Field Theories, arXiv:1708.09544 [INSPIRE].
  30. [30]
    S. He, Conformal Bootstrap to Rényi Entropy in 2D Liouville and Super-Liouville CFTs, arXiv:1711.00624 [INSPIRE].
  31. [31]
    Y. Kusuki and T. Takayanagi, Rényi entropy for local quenches in 2D CFT from numerical conformal blocks, JHEP 01 (2018) 115 [arXiv:1711.09913] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Levin and X.G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613].
  34. [34]
    W.-Z. Guo, Coherent state, local excitation in 2D conformal field theory, arXiv:1510.07142 [INSPIRE].
  35. [35]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333.ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A Stereoscopic Look into the Bulk, JHEP 07 (2016) 129 [arXiv:1604.03110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    G.W. Moore and N. Seiberg, Polynomial Equations for Rational Conformal Field Theories, Phys. Lett. B 212 (1988) 451 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    G.W. Moore and N. Seiberg, Naturality in Conformal Field Theory, Nucl. Phys. B 313 (1989) 16 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    P. Di Francesco, H. Saleur and J.B. Zuber, Critical Ising Correlation Functions in the Plane and on the Torus, Nucl. Phys. B 290 (1987) 527 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Springer, Heidelberg Germany (1998).zbMATHGoogle Scholar
  41. [41]
    V.S. Dotsenko and V.A. Fateev, Conformal Algebra and Multipoint Correlation Functions in Two-Dimensional Statistical Models, Nucl. Phys. B 240 (1984) 312 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    V.S. Dotsenko and V.A. Fateev, Four Point Correlation Functions and the Operator Algebra in the Two-Dimensional Conformal Invariant Theories with the Central Charge c < 1, Nucl. Phys. B 251 (1985) 691 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Fuchs, I. Runkel and C. Schweigert, TFT construction of RCFT correlators I: partition functions, Nucl. Phys. B 646 (2002) 353 [hep-th/0204148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    Z. Wang, CBMS Regional Conference Series in Mathematics. Vol. 112: Topological Quantum Computation, AMS Press, New York U.S.A. (2010).Google Scholar
  45. [45]
    G. Moore and N. Seiberg, Lectures on RCFT, in Physics, Geometry and Topolog, Springer, Berlin Germany (1990), pg. 263.Google Scholar
  46. [46]
    E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    Y. Gu and X.-L. Qi, Fractional Statistics and the Butterfly Effect, JHEP 08 (2016) 129 [arXiv:1602.06543] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    S. Dong, E. Fradkin, R.G. Leigh and S. Nowling, Topological Entanglement Entropy in Chern-Simons Theories and Quantum Hall Fluids, JHEP 05 (2008) 016 [arXiv:0802.3231] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    H.-J. Matschull, Black hole creation in (2 + 1)-dimensions, Class. Quant. Grav. 16 (1999) 1069 [gr-qc/9809087] [INSPIRE].
  52. [52]
    I. Ya. Aref’eva, M.A. Khramtsov and M.D. Tikhanovskaya, Thermalization after holographic bilocal quench, JHEP 09 (2017) 115 [arXiv:1706.07390] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Physics Division, National Center for Theoretical SciencesNational Tsing-Hua UniversityHsinchuTaiwan
  2. 2.Max Planck Institute for Gravitational Physics (Albert Einstein Institute)GolmGermany
  3. 3.Department of Physics and AstronomyUniversity of UtahSalt Lake CityU.S.A.

Personalised recommendations